【題目】已知:O上兩個(gè)定點(diǎn)A,B和兩個(gè)動(dòng)點(diǎn)C,D,AC與BD交于點(diǎn)E.
(1)如圖1,求證:EAEC=EBED;
(2)如圖2,若AB=BC,AD是O的直徑,求證:ADAC=2BDBC;
(3) 如圖3,若AC⊥BD,點(diǎn)O到AD的距離為2,求BC的長(zhǎng).
【答案】(1)見解析;(2)見解析;(3) BC =4.
【解析】
(1)根據(jù)同弧所對(duì)的圓周角相等得到角相等,從而證得三角形相似,于是得到結(jié)論;
(2)如圖2,連接CD,OB交AC于點(diǎn)F由B是弧AC的中點(diǎn)得到∠BAC=∠ADB=∠ACB,且AF=CF=0.5AC.證得△CBF∽△ABD.即可得到結(jié)論;
(3)如圖3,連接AO并延長(zhǎng)交O于F,連接DF得到AF為O的直徑于是得到∠ADF=90°,過(guò)O作OH⊥AD于H,根據(jù)三角形的中位線定理得到DF=2OH=4,通過(guò)△ABE∽△ADF,得到1=∠2,于是結(jié)論可得.
(1)證明:∵∠EAD=∠EBC,∠BCE=∠ADE,
∴△AED∽△BEC,
∴=,
∴EAEC=EBED;
(2)證明:如圖2,連接CD,OB交AC于點(diǎn)F
∵B是弧AC的中點(diǎn),
∴∠BAC=∠ADB=∠ACB,且AF=CF=0.5AC.
又∵AD為O直徑,
∴∠ABD=90°,又∠CFB=90°.
∴△CBF∽△ABD.
∴=,故CFAD=BDBC.
∴ACAD=2BDBC;
(3)如圖3,連接AO并延長(zhǎng)交O于F,連接DF,
∴AF為O的直徑,
∴∠ADF=90°,
過(guò)O作OH⊥AD于H,
∴AH=DH,OH∥DF,
∵AO=OF,
∴DF=2OH=4,
∵AC⊥BD,
∴∠AEB=∠ADF=90°,
∵∠ABD=∠F,
∴△ABE∽△ADF,
∴∠1=∠2,
∴弧BC=弧DF,
∴BC=DF=4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程有兩個(gè)正整數(shù)根是正整數(shù)的三邊a、b、c滿足,,.
求:的值;
的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】實(shí)踐操作
如圖,是直角三角形,,利用直尺和圓規(guī)按下列要求作圖,并在圖中表明相應(yīng)的字母.(保留作圖痕跡,不寫作法)
(1)①作的平分線,交于點(diǎn);②以為圓心,為半徑作圓.
綜合運(yùn)用
在你所作的圖中,
(2)與⊙的位置關(guān)系是 ;(直接寫出答案)
(3)若,,求⊙的半徑.
(4)在(3)的條件下,求以為軸把△ABC旋轉(zhuǎn)一周得到的圓錐的側(cè)面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在正方形ABCD中,點(diǎn)E、F分別在BC和CD上,AE = AF
(1)求證:BE = DF;
(2)連接AC交EF于點(diǎn)O,延長(zhǎng)OC至點(diǎn)M,使OM = OA,連接EM、FM.判斷四邊形AEMF是什么特殊四邊形?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已矩形ABCD的頂點(diǎn)A、D分別在x軸、y軸上,,則C點(diǎn)坐標(biāo)為( )
A. B. C. (3,5)D. (4,7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,E是邊長(zhǎng)為1的正方形ABCD的對(duì)角線BD上一動(dòng)點(diǎn),點(diǎn)E從點(diǎn)B向點(diǎn)D運(yùn)動(dòng)(與點(diǎn)B,D不重合),過(guò)點(diǎn)E作直線GH∥BC,交AB于點(diǎn)G,交CD于點(diǎn)H,EF⊥AE,交CD(或CD的延長(zhǎng)線)于點(diǎn)F.
(1)如圖①,求證:△AGE≌△EHF.
(2)在點(diǎn)E的運(yùn)動(dòng)過(guò)程中(如圖①,②),四邊形AFHG的面積是否會(huì)發(fā)生變化?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABD與△GDF都是等腰直角三角形,BD與DF均為斜邊(BD<DF).
(1)如圖1,B,D,F(xiàn)在同一直線上,過(guò)F作MF⊥GF于點(diǎn)F,取MF=AB,連結(jié)AM交BF于點(diǎn)H,連結(jié)GA,GM.
①求證:AH=HM;
②請(qǐng)判斷△GAM的形狀,并給予證明;
③請(qǐng)用等式表示線段AM,BD,DF的數(shù)量關(guān)系,并說(shuō)明理由.
(2)如圖2,GD⊥BD,連結(jié)BF,取BF的中點(diǎn)H,連結(jié)AH并延長(zhǎng)交DF于點(diǎn)M,請(qǐng)用等式直接寫出線段AM,BD,DF的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)的圖象如圖所示,則下列結(jié)論:
① ② ③ ④ ⑤其中正確的個(gè)數(shù)是( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+6經(jīng)過(guò)點(diǎn)A(﹣3,0)和點(diǎn)B(2,0),直線y=h(h為常數(shù),且0<h<6)與BC交于點(diǎn)D,與y軸交于點(diǎn)E,與AC交于點(diǎn)F.
(1)求拋物線的解析式;
(2)連接AE,求h為何值時(shí),△AEF的面積最大.
(3)已知一定點(diǎn)M(﹣2,0),問(wèn):是否存在這樣的直線y=h,使△BDM是等腰三角形?若存在,請(qǐng)求出h的值和點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com