【題目】在正方形ABCD中,
(1)如圖1,若點(diǎn)E,F(xiàn)分別在邊BC,CD上,AE,BF交于點(diǎn)O,且∠AOF=90°.求證:AE =BF.
(2)如圖2,將正方形ABCD折疊,使頂點(diǎn)A與CD邊上的點(diǎn)M重合,折痕交AD于E,交BC于F,邊AB折疊后與BC邊交于點(diǎn)G.若DC=5,CM=2,求EF的長.
【答案】(1)證明見解析;(2) .
【解析】(1) 分析:(1)根據(jù)矩形的對邊平行且相等得到AB=BC,∠DCB=∠ABE.再結(jié)合一對直角相等即可證明三角形全等;(2) 由折疊的性質(zhì)得全等三角形的對應(yīng)邊相等以及勾股定理,可以求得DF,EF的長;再根據(jù)勾股定理求得DE的長,運(yùn)用三角函數(shù)定義求解.
本題解析:
(1)證明:∵四邊形ABCD是正方形,∴AB=BC,
∠ABE=∠BCF=90°,∵∠AOF=90°,∠AOB=90°,
∴∠BAE+∠OBA=90°,又∵∠FBC+∠OBA=90°,
∴∠BAE=∠CBF(同角的余角相等),在△ABE和△BCF中
∴
∴△ABE≌△BCF(ASA).∴AE=BF.
(2) 作MG⊥AB于G,作FH⊥AD于H,如圖所示:
則MG=AD,F(xiàn)H=AB,∴MG=FH,
在△AMG和△EFH中, ,
∴△AMG≌△EFH(AAS),∴AM=EF;∵DC=AD=5,CM=2,∴DM=5-2=3
在Rt△ADM中,根據(jù)勾股定理得:AM=,
∴EF=AM=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩工程隊(duì)同時(shí)修筑水渠,且兩隊(duì)所修水渠總長度相等.如圖是兩隊(duì)所修水渠長度y(米)與修筑時(shí)間x(時(shí))的函數(shù)圖象的一部分.請根據(jù)圖中信息,解答下列問題:
(1)①直接寫出甲隊(duì)在0≤x≤5的時(shí)間段內(nèi),y與x之間的函數(shù)關(guān)系式;
②直接寫出乙隊(duì)在2≤x≤5的時(shí)間段內(nèi),y與x之間的函數(shù)關(guān)系式;
(2)求開修幾小時(shí)后,乙隊(duì)修筑的水渠長度開始超過甲隊(duì)?
(3)如果甲隊(duì)施工速度不變,乙隊(duì)在修筑5小時(shí)后,施工速度因故減少到5米/時(shí),結(jié)果兩隊(duì)同時(shí)完成任務(wù),求乙隊(duì)從開修到完工所修水渠的長度為多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛汽車在筆直的公路上行駛,兩次拐彎后,仍在原來的方向上平行前進(jìn),那么這兩次拐彎的角度是( )
A. 第一次向右拐40, 第二次向左拐140
B. 第一次向左拐40, 第二次向右拐40
C. 第一次向左拐40, 第二次向左拐140
D. 第一次向右拐40, 第二次向右拐40°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)在數(shù)軸上對應(yīng)的數(shù)為,點(diǎn)對應(yīng)的數(shù)為,且.
則________,________;并將這兩個(gè)數(shù)在數(shù)軸上所對應(yīng)的點(diǎn),表示出來;
數(shù)軸上在點(diǎn)右邊有一點(diǎn)到、兩點(diǎn)的距離和為,若點(diǎn)的數(shù)軸上所對應(yīng)的數(shù)為,求的值;
若點(diǎn),點(diǎn)同時(shí)沿?cái)?shù)軸向正方向運(yùn)動(dòng),點(diǎn)運(yùn)動(dòng)的速度為單位/秒,點(diǎn)運(yùn)動(dòng)的速度為單位/秒,若,求運(yùn)動(dòng)時(shí)間的值.
(溫馨提示:、之間距離記作,點(diǎn)、在數(shù)軸上對應(yīng)的數(shù)分別為、,則.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平行四邊形ABCD中,O為對角線BD的中點(diǎn),過點(diǎn)O的直線EF分別交AD,BC于E,F兩點(diǎn),連結(jié)BE,DF.
(1)求證:△DOE≌△BOF.
(2)當(dāng)∠DOE等于多少度時(shí),四邊形BFDE為菱形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在不透明的箱子里放有4個(gè)乒乓球,每個(gè)乒乓球上分別寫有數(shù)字1、2、3、4,從箱中摸出一個(gè)球記下數(shù)字后放回箱中,搖勻后再摸出一個(gè)記下數(shù)字.若將第一次摸出的球上的數(shù)字記為點(diǎn)的橫坐標(biāo),第二次摸出球上的數(shù)字記為點(diǎn)的縱坐標(biāo).
(1)請用列表法或樹狀圖法寫出兩次摸球后所有可能的結(jié)果.
(2)求這樣的點(diǎn)落在如圖所示的圓內(nèi)的概率(注:圖中圓心在直角坐標(biāo)系中的第一象限內(nèi),并且分別于x軸、y軸切于點(diǎn)(2,0)和(0,2)兩點(diǎn)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輪船在P處測得燈塔A在正北方向,燈塔B在南偏東24.5°方向,輪船向正東航行了2400m,到達(dá)Q處,測得A位于北偏西49°方向,B位于南偏西41°方向.
(1)線段BQ與PQ是否相等?請說明理由;
(2)求A、B間的距離(參考數(shù)據(jù)cos41°=0.75).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】同學(xué)們都知道,表示5與-2之差的絕對值,實(shí)際上也可理解為5與-2兩數(shù)在數(shù)軸上所對應(yīng)的兩點(diǎn)之間的距離,試探索:
(1)求=________.
(2)若=5,則x=____.
(3)同理表示數(shù)軸上有理數(shù)x所對應(yīng)的點(diǎn)到-1和2所對應(yīng)的兩點(diǎn)距離之和,請你找出所有符合條件的整數(shù)x,使得=3,這樣的整數(shù)是________(直接寫答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知數(shù)軸上A,B兩點(diǎn)對應(yīng)的數(shù)分別為-2,4,點(diǎn)P為數(shù)軸上一動(dòng)點(diǎn),其對應(yīng)的數(shù)為x.
(1)若點(diǎn)P到點(diǎn)A,B的距離相等,求點(diǎn)P對應(yīng)的數(shù)x的值.
(2)數(shù)軸上是否存在點(diǎn)P,使點(diǎn)P到點(diǎn)A,B的距離之和為8?若存在,請求出x的值;若不存在,說明理由.
(3)點(diǎn)A,B分別以2個(gè)單位長度/分、1個(gè)單位長度/分的速度向右運(yùn)動(dòng),同時(shí)點(diǎn)P以5個(gè)單位長度/分的速度從O點(diǎn)向左運(yùn)動(dòng).當(dāng)遇到A時(shí),點(diǎn)P立即以同樣的速度向右運(yùn)動(dòng),并不停地往返于點(diǎn)A與點(diǎn)B之間.當(dāng)點(diǎn)A與點(diǎn)B重合時(shí),點(diǎn)P經(jīng)過的總路程是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com