【題目】請(qǐng)閱讀下列材料,并解答相應(yīng)的問題:
幻方
將若干個(gè)數(shù)組成一個(gè)正方形數(shù)陣,若任意一行,一列及對(duì)角線上的數(shù)字之和都相等,則稱具有這種性質(zhì)的數(shù)字方陣為“幻方”.中國(guó)古代稱“幻方”為“河圖”、“洛書”等.例如,下面是三個(gè)三階幻方,是將數(shù)字1,2,3,4,5,6,7,8,9填入到3×3的方格中得到的,其每行、每列、每條對(duì)角線上的三個(gè)數(shù)之和相等.
(1)設(shè)下面的三階幻方中間的數(shù)字是x(其中x為正整數(shù)),請(qǐng)用含x的代數(shù)式將下面的幻方填充完整.
x+3 | x﹣4 | |
x﹣2 | x | |
x﹣1 | x﹣3 |
(2)若設(shè)(1)題幻方中9個(gè)數(shù)的和為S,則S與中間的數(shù)字x之間的數(shù)量關(guān)系為 .
(3)請(qǐng)?jiān)谙旅娴?/span>A、B兩題中任選一題作答,我選擇 .
現(xiàn)要用9個(gè)數(shù)3,4,5,6,7,8,9,10,11構(gòu)造一個(gè)三階幻方.
A、幻方最中間的數(shù)字應(yīng)等于 .
B、請(qǐng)將構(gòu)造的幻方填寫在下面3×3的方格中.
【答案】(1)三階幻方如圖所示:見解析;(2)9x;(3)A:7;B:幻方如圖所示:見解析.
【解析】
(1)根據(jù)每行、每列、每條對(duì)角線上的三個(gè)數(shù)之和相等計(jì)算得出即可;(2)把(1)中所有數(shù)據(jù)相加即可得出S與x的數(shù)量關(guān)系;(3)A:根據(jù)(2)把所有數(shù)相加除以9即可得到,B據(jù)每行、每列、每條對(duì)角線上的三個(gè)數(shù)之和相等計(jì)算填出其中一種即可.
解:(1)三階幻方如圖所示:
(2)S=(x+4)+(x+3)+(x+2)+(x+1)+x+(x-1)+(x-2)+(x-3)+(x-4)=9x.
故答案為9x;
(3)A:(3+4+5+6+7+8+9+10+11)÷9=7,故答案為7;
B:幻方如圖所示:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)二次函數(shù)y1,y2的圖象的頂點(diǎn)分別為(a,b)、(c,d),當(dāng)a=﹣c,b=2d,且開口方向相同時(shí),則稱y1是y2的“反倍頂二次函數(shù)”.
(1)請(qǐng)寫出二次函數(shù)y=x2+x+1的一個(gè)“反倍頂二次函數(shù)”;
(2)已知關(guān)于x的二次函數(shù)y1=x2+nx和二次函數(shù)y2=nx2+x,函數(shù)y1+y2恰是y1﹣y2的“反倍頂二次函數(shù)”,求n.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,正確的有( )
①等腰三角形兩邊長(zhǎng)為2和5,則它的周長(zhǎng)是9或12;②無理數(shù)-在-2和-1之間;③六邊形的內(nèi)角和是外角和的2倍;④若a>b,則a-b>0.它的逆命題是假命題;⑤北偏東30°與南偏東50°的兩條射線組成的角為80°.
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)格中,△ABC的頂點(diǎn)均在格點(diǎn)上,請(qǐng)?jiān)谒o的直角坐標(biāo)系中解答下列問題:
(1)作出△ABC關(guān)于原點(diǎn)O成中心對(duì)稱的△A1B1C1;
(2)直接寫出:以A、B、C為頂點(diǎn)的平形四邊形的第四個(gè)頂點(diǎn)D的坐標(biāo) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A是反比例函數(shù)的圖象上的一個(gè)動(dòng)點(diǎn),連接OA,若將線段O A繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到線段OB,則點(diǎn)B所在圖象的函數(shù)表達(dá)式為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC沿BC方向平移2cm得到△DEF,若△ABC的周長(zhǎng)為16cm,則四辺形ABFD的周長(zhǎng)為( )
A. 16cmB. 18cmC. 20cmD. 22cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】江漢路一服裝店銷售一種進(jìn)價(jià)為50元/件的襯衣,生產(chǎn)廠家規(guī)定每件定價(jià)為60~150元.當(dāng)定價(jià)為60元/件時(shí),每星期可賣出70件,每件每漲價(jià)10元,一星期少賣出5件.
(1)當(dāng)每件襯衣定價(jià)為多少元時(shí)(定價(jià)為10元的正整數(shù)倍),服裝店每星期的利潤(rùn)最大?最大利潤(rùn)為多少元?
(2)請(qǐng)分析每件襯衣的定價(jià)在哪個(gè)范圍內(nèi)時(shí),每星期的銷售利潤(rùn)不低于2 700元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD沿著直線BD折疊,使點(diǎn)C落在C′處,BC′交AD于點(diǎn)E,AD=4,AB=3,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形紙片ABCD中,AB=3cm,AD=5cm,折疊紙片使B點(diǎn)落在邊AD上的E處,折痕為PQ,過點(diǎn)E作EF∥AB交PQ于F,連接BF.
(1)求證:四邊形BFEP為菱形;
(2)當(dāng)點(diǎn)E在AD邊上移動(dòng)時(shí),折痕的端點(diǎn)P、Q也隨之移動(dòng);
①當(dāng)點(diǎn)Q與點(diǎn)C重合時(shí)(如圖2),求菱形BFEP的邊長(zhǎng);
②若限定P、Q分別在邊BA、BC上移動(dòng),求出點(diǎn)E在邊AD上移動(dòng)的最大距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com