【題目】已知圖中的曲線是反比例函數(shù)為常數(shù),圖象的一支.

這個反比例函數(shù)圖象的另一支在第幾象限?常數(shù)的取值范圍是什么;

若該函數(shù)的圖象與正比例函數(shù)的圖象在第一象內限的交點為,過點作軸的垂線,垂足為,當的面積為時,求點的坐標及反比例函數(shù)的解析式.

【答案】(1)m>5;(2)的坐標為.

【解析】

試題解:(1)這個反比例函數(shù)圖象的另一支在第三象限,

這個反比例函數(shù)的圖象分布在第一、第三象限,

∴m-50

解得m5;

2)設點A的橫坐標為a

Ay=2x上,

A的縱坐標為2a

∵AB⊥x軸,

B的坐標為(a0

∵SOAB=4,

a2a=4

解得a=2-2(負值舍去),

A的坐標為(24),

A在反比例函數(shù)的圖象上,

∴4=,即m-5=8

反比例函數(shù)的解析式為;

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】若順次連接四邊形ABCD四邊中點所得的四邊形是矩形,則原四邊形的對角線AC、BD所滿足的條件是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了促進足球進校園活動的開展,某市舉行了中學生足球比賽活動現(xiàn)從A,B,C三支獲勝足球隊中,隨機抽取兩支球隊分別到兩所邊遠地區(qū)學校進行交流.

(1)請用列表或畫樹狀圖的方法(只選擇其中一種),表示出抽到的兩支球隊的所有可能結果;

(2)求出抽到B隊和C隊參加交流活動的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,的角平分線.

1 2

1)如圖1,,點在邊上,,請直接寫出圖中所有與相等的線段.

2)如圖2,如果,求證:.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,AB=AC,點D是直線BC上一點(不與B、C重合),以AD為一邊在AD右側作△ADE,使AD=AE,DAE=BAC,連接CE.

(1)如圖1,當點D在線段BC上,如果∠BAC=90°,則∠BCE=_______度;

(2)如圖2如果∠BAC=60°,則∠BCE=______度;

(3)設∠BAC=,BCE=

①如圖3,當點D在線段BC上移動,則之間有怎樣的數(shù)量關系?請說明理由;

②當點D在直線BC上移動,請直接寫出之樣的數(shù)量關系,不用證明。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市教育行政部門為了解初三學生每學期參加綜合實踐活動的情況,隨機抽樣調查了某校初三學生一個學期參加綜合實踐活動的天數(shù),并用得到的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計圖(如圖).請你根據(jù)圖中提供的信息,回答下列問題:

1)該校初三學生總數(shù)為 人;

2)分別求出活動時間為5天、7天的學生人數(shù)為 ,并補全頻數(shù)分布直方圖;

3)扇形統(tǒng)計圖中活動時間為5的扇形所對圓心角的度數(shù)是 ;

4)在這次抽樣調查中,眾數(shù)和中位數(shù)分別是 、

5)如果該市共有初三學生96000人,請你估計活動時間不少于5的大約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在日歷上,我們可以發(fā)現(xiàn)其中某些數(shù)滿足一定的規(guī)律,如圖是20128月份的日歷.我們任意選擇其中所示的方框部分,將每個方框部分中4個位置上的數(shù)交又相乘,再相減,例如:7×13-6×14=7,17×23-16×24=7,不難發(fā)現(xiàn),結果都是7.

①請你再選擇一個類似的部分試一試,看看是否符合這個規(guī)律;

②請你利用整式的運算對以上的規(guī)律加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足為F.

(1)求證:△ABC≌△ADE;

(2)求∠FAE的度數(shù);

(3)求證:CD=2BF+DE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2017年5月14日15日,“一帶一路”國際合作高峰壇在北京行,本屆壇期間,中國同30多個國家簽署經(jīng)貿合作協(xié)議,某廠準備生產(chǎn)甲、乙兩種商品共8萬件銷“一帶一路”沿線國家和地區(qū),已知2件甲種商品與3件乙種商品的銷售收入相同,3件甲種商品比2件乙種商品的銷售收入1500元.

(1)甲商品與乙種商品的銷售單價各多少元?

(2)若甲、乙兩種商品的銷售總收入不低于5400萬元,則至少銷售甲種商品多少萬件?

查看答案和解析>>

同步練習冊答案