【題目】用代數(shù)式表示“m加上n的和的立方”_____.
科目:初中數(shù)學 來源: 題型:
【題目】提出問題:如圖①,在四邊形ABCD中,P是AD邊上任意一點,
△PBC與△ABC和△DBC的面積之間有什么關(guān)系?
探究發(fā)現(xiàn):為了解決這個問題,我們可以先從一些簡單的、特殊的情形入手:
(1)當AP=AD時(如圖②):
∵AP=AD,△ABP和△ABD的高相等,
∴S△ABP=S△ABD.
∵PD=AD﹣AP=AD,△CDP和△CDA的高相等,
∴S△CDP=S△CDA.
∴S△PBC=S四邊形ABCD﹣S△ABP﹣S△CDP
=S四邊形ABCD﹣S△ABD﹣S△CDA
=S四邊形ABCD﹣(S四邊形ABCD﹣S△DBC)﹣(S四邊形ABCD﹣S△ABC)
=S△DBC+S△ABC.
(2)當AP=AD時,探求S△PBC與S△ABC和S△DBC之間的關(guān)系,寫出求解過程;
(3)當AP=AD時,S△PBC與S△ABC和S△DBC之間的關(guān)系式為: ;
(4)一般地,當AP=AD(n表示正整數(shù))時,探求S△PBC與S△ABC和S△DBC之間的關(guān)系,寫出求解過程;
問題解決:當AP=AD(0≤≤1)時,S△PBC與S△ABC和S△DBC之間的關(guān)系式為: .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=2,AD=4,M是AD的中點,點E是線段AB上一動點(可以運動到點A和點B),連接EM并延長交線段CD的延長線于點F.
(1) 如圖1,①求證:AE=DF; ②若EM=3,∠FEA=45°,過點M作MG⊥EF交線段BC于點G,請直接寫出△GEF的的形狀,并求出點F到AB邊的距離;
(2)改變平行四邊形ABCD中∠B的度數(shù),當∠B=90°時,可得到矩形ABCD(如圖2),請判斷△GEF的形狀,并說明理由;
(3)在(2)的條件下,取MG中點P,連接EP,點P隨著點E的運動而運動,當點E在線段AB上運動的過程中,請直接寫出△EPG的面積S的范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠AOB=90°,C,D是的三等分點,AB分別交OC,OD于點E,F.試找出圖中相等的線段(半徑除外).
(1)錯因: .
(2)糾錯:____________________________________________________________
.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,長方形ABCD中,AB=4cm,BC=3cm,E為CD的中點.動點P從A點出發(fā),以每秒1cm的速度沿A﹣B﹣C﹣E運動,最終到達點E.若點P運動的時間為x秒,則當x=__時,△APE的面積等于5.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)方程(x2)216=0的根為______.
(2)解方程:x24x12=0.
(3)解方程:(3y)2+y2=9.
(4)解方程:2x2+6x-5=0
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,三角形ABC三個頂點A,B,C的坐標分別為A(1,2),B(4,3),C(3,1).
(1)三角形A1B1C1向右平移4個單位長度,再向下平移3個單位長度,恰好得到三角形ABC,試寫出三角形A1B1C1三個頂點的坐標.
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果x2+mx+n=(x+3)(x﹣1),那么m,n的值分別為( 。
A. m=2,n=3B. m=2,n=﹣3C. m=﹣2,n=3D. m=﹣2,n=﹣3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com