【題目】如圖,在平面直角坐標(biāo)系中,△ABC的坐標(biāo)分別為A(﹣3,5),B(﹣4,2),C(﹣1,4)(注:每個(gè)方格的邊長(zhǎng)均為1個(gè)單位長(zhǎng)度).
(1)將△ABC沿著水平方向向右平移6個(gè)單位得△A1B1C1,請(qǐng)畫出△A1B1C1;
(2)作出將△ABC關(guān)于O點(diǎn)成中心對(duì)稱的△A2B2C2,并直接寫出的坐標(biāo);
(3)△A1B1C1與△A2B2C2是否成中心對(duì)稱?若是,請(qǐng)寫出對(duì)稱中心的坐標(biāo);若不是,請(qǐng)說明理由.
【答案】(1)如圖,△A1B1C1即為所求,見解析;(2)如圖,△A2B2C2即為所求,見解析;A2(3,﹣5)、B2(4,﹣2)、C2(1,﹣4);(3)△A1B1C1與△A2B2C2成中心對(duì)稱,對(duì)稱中心點(diǎn)P的坐標(biāo)為(3,0).
【解析】
(1)將點(diǎn)A,B,C分別向右平移6各單位,順次連接對(duì)應(yīng)點(diǎn)即可得出答案;
(2)分別將A,B,C繞原點(diǎn)O繞旋轉(zhuǎn)180°,再順次連接對(duì)應(yīng)點(diǎn)即可得出答案;
(3)連接三組對(duì)應(yīng)點(diǎn),可得三線段交于同一點(diǎn),據(jù)此可得.
(1)如圖,△A1B1C1即為所求:
(2)如圖,△A2B2C2即為所求,A2(3,﹣5)、B2(4,﹣2)、C2(1,﹣4).
(3)△A1B1C1與△A2B2C2成中心對(duì)稱,對(duì)稱中心點(diǎn)P的坐標(biāo)為(3,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1交x軸于A(3,0),交y軸于B(0,﹣2)
(1)求直線l1的表達(dá)式;
(2)將l1向上平移到C(0,3),得到直線l2,寫出l2的表達(dá)式;
(3)過點(diǎn)A作直線l3⊥x軸,交l2于點(diǎn)D,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸是一個(gè)非常重要的數(shù)學(xué)工具,通過它把數(shù)和數(shù)軸上的點(diǎn)建立起對(duì)應(yīng)關(guān)系,揭示了數(shù)與點(diǎn)之間的內(nèi)在聯(lián)系,也體現(xiàn)了“數(shù)形結(jié)合”的數(shù)學(xué)思想.如圖,數(shù)軸上的點(diǎn)、、、、分別表示、、0、2.5、6,請(qǐng)利用數(shù)軸解決下列問題:
(1)數(shù)軸上,、兩點(diǎn)之間的距離是 ,、兩點(diǎn)之間的距離是 ,到點(diǎn)的距離是3個(gè)單位長(zhǎng)度的點(diǎn)所表示的數(shù)是 .
(2)如果將點(diǎn)向左移動(dòng)7個(gè)單位長(zhǎng)度,再向右移動(dòng)5個(gè)單位長(zhǎng)度,請(qǐng)同學(xué)們?cè)跀?shù)軸上畫出點(diǎn)移動(dòng)的路線圖,并指出終點(diǎn)所表示的數(shù).
(3)如果點(diǎn)是數(shù)軸上的另一點(diǎn),將點(diǎn)向右移動(dòng)3個(gè)單位長(zhǎng)度,再向左移動(dòng)5個(gè)單位長(zhǎng)度,終點(diǎn)表示的數(shù)是,那么點(diǎn)表示的數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市“藝術(shù)節(jié)”期間,小明、小亮都想去觀看茶藝表演,但是只有一張茶藝表演 門票,他們決定采用抽卡片的辦法確定誰(shuí)去.規(guī)則如下:
將正面分別標(biāo)有數(shù)字 1、2、3、4 的四張卡片(除數(shù)字外其余都相同)洗勻后,背面朝上 放置在桌面上,隨機(jī)抽出一張記下數(shù)字后放回;重新洗勻后背面朝上放置在桌面上, 再隨機(jī)抽出一張記下數(shù)字.如果兩個(gè)數(shù)字之和為奇數(shù),則小明去;如果兩個(gè)數(shù)字之和 為偶數(shù),則小亮去.
(1)請(qǐng)用列表或畫樹狀圖的方法表示抽出的兩張卡片上的數(shù)字之和的所有可能出現(xiàn) 的結(jié)果;
(2)你認(rèn)為這個(gè)規(guī)則公平嗎?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:閱讀下列材料:已知二次三項(xiàng)式2x2+x+a有一個(gè)因式是(x+2),求另一個(gè)因式以及a 的值
解:設(shè)另一個(gè)因式是(2x+b),
根據(jù)題意,得2x2+x+a=(x+2)(2x+b),
展開,得2x2+x+a =2x2+(b+4)x+2b,
所以,解得,
所以,另一個(gè)因式是(2x3),a 的值是6.
請(qǐng)你仿照以上做法解答下題:已知二次三項(xiàng)式3x2 10x m 有一個(gè)因式是(x+4),求另一個(gè)因式以及m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AM是中線,D是AM所在直線上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A重合),DE∥AB交AC所在直線于點(diǎn)F,CE∥AM,連接BD,AE.
(1)如圖1,當(dāng)點(diǎn)D與點(diǎn)M重合時(shí),觀察發(fā)現(xiàn):△ABM向右平移BC到了△EDC的位置,此時(shí)四邊形ABDE是平行四邊形.請(qǐng)你給予驗(yàn)證;
(2)如圖2,圖3,圖4,是當(dāng)點(diǎn)D不與點(diǎn)M重合時(shí)的三種情況,你認(rèn)為△ABM應(yīng)該平移到什么位置?直接在圖中畫出來.此時(shí)四邊形ABDE還是平行四邊形嗎?請(qǐng)你選擇其中一種情況說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC中,點(diǎn)D為邊BC上一點(diǎn),點(diǎn)E在邊AC上,且∠ADE=∠B
(1) 如圖1,若AB=AC,求證:;
(2) 如圖2,若AD=AE,求證:;
(3) 在(2)的條件下,若∠DAC=90°,且CE=4,tan∠BAD=,則AB=____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè) A 是由 2×4 個(gè)整數(shù)組成的 2 行 4 列的數(shù)表,如果某一行(或某一列)各數(shù)之和為負(fù)數(shù),則改變?cè)撔校ɑ蛟摿校┲兴袛?shù)的符號(hào),稱為一次“操作”.?dāng)?shù)表A 如下表所示,如果經(jīng)過兩次“操作”,使得到的數(shù)表每行的各數(shù)之和與每列的各數(shù)之和均為非負(fù)整數(shù),請(qǐng)寫出每次“操作”后所得的數(shù)表.(寫出一種方法即可)
1 | 2 | 3 | -7 |
-2 | -1 | 0 | 1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,DE、DF是△ABC的中位線,連接EF、AD,其交點(diǎn)為O.求證:
(1)△CDE≌△DBF;
(2)OA=OD.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com