已知:如圖,△ABC中,BO,CO分別是∠ABC和∠ACB的平分線,過O點(diǎn)的直線分別交AB、AC于點(diǎn)D、E,且DE∥BC.若AB=6cm,AC=8cm,則△ADE的周長為
14cm
14cm
分析:兩直線平行,內(nèi)錯(cuò)角相等,以及根據(jù)角平分線性質(zhì),可得△OBD、△EOC均為等腰三角形,由此把△AEF的周長轉(zhuǎn)化為AC+AB.
解答:解:∵DE∥BC
∴∠DOB=∠OBC,
又∵BO是∠ABC的角平分線,
∴∠DBO=∠OBC,
∴∠DBO=∠DOB,
∴BD=OD,
同理:OE=EC,
∴△ADE的周長=AD+OD+OE+EC=AD+BD+AE+EC=AB+AC=14cm.
故答案是:14cm.
點(diǎn)評:本題考查了平行線的性質(zhì)和等腰三角形的判定及性質(zhì),正確證明△OBD、△EOC均為等腰三角形是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

17、已知,如圖,△ABC中,∠BAC=90°,AD⊥BC于點(diǎn)D,BE平分∠ABC,交AD于點(diǎn)M,AN平分∠DAC,交BC于點(diǎn)N.
求證:四邊形AMNE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,∠ABC、∠ACB 的平分線相交于點(diǎn)F,過F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,△ABC是等邊三角形,點(diǎn)D在AB上,點(diǎn)E在AC的延長線上,且BD=CE,DE交BC于F,求證:BF=CF+CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,△ABC中,AB=AC=10,BC=16,點(diǎn)D在BC上,DA⊥CA于A.
求:BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,△ABC中,AD⊥BC,BD=DE,點(diǎn)E在AC的垂直平分線上.
(1)請問:AB、BD、DC有何數(shù)量關(guān)系?并說明理由.
(2)如果∠B=60°,請問BD和DC有何數(shù)量關(guān)系?并說明理由.

查看答案和解析>>

同步練習(xí)冊答案