【題目】已知,如圖,O為坐標(biāo)原點(diǎn),四邊形OABC為矩形,A(10,0),C(0,4),點(diǎn)D是OA的中點(diǎn),點(diǎn)P在邊BC上以每秒1個(gè)單位長(zhǎng)的速度由點(diǎn)C向點(diǎn)B運(yùn)動(dòng).
(1)當(dāng)t為何值時(shí),四邊形PODB是平行四邊形?
(2)在線(xiàn)段PB上是否存在一點(diǎn)Q,使得ODQP為菱形?若存在,求t的值;若不存在,請(qǐng)說(shuō)明理由;
(3)△OPD為等腰三角形時(shí),寫(xiě)出點(diǎn)P的坐標(biāo)(不必寫(xiě)過(guò)程).
【答案】(1)5;(2)3;(3)P1(3,4),P2(2.5,4),P3(2,4),P4(8,4).
【解析】
試題分析:(1)根據(jù)平行四邊形的性質(zhì)就可以知道PB=5,可以求出PC=5,從而可以求出t的值.
(2)要使ODQP為菱形,可以得出PO=5,由三角形的勾股定理就可以求出CP的值而求出t的值.
(3)當(dāng)P1O=OD=5或P2O=P2D或P3D=OD=5或P4D=OD=5時(shí)分別作P2E⊥OA于E,DF⊥BC于F,P4G⊥OA于G,利用勾股定理求得P1C,OE,P3F,DG的值,就可以求出P的坐標(biāo).
試題解析:(1)∵四邊形PODB是平行四邊形,
∴PB=OD=5,
∴PC=5,
∴t=5;
(2)∵四邊形ODQP為菱形,
∴OD=OP=PQ=5,
∴在Rt△OPC中,由勾股定理得:
PC=3
∴t=3;
(3)當(dāng)P1O=OD=5時(shí),由勾股定理可以求得P1C=3,
P2O=P2D時(shí),作P2E⊥OA,
∴OE=ED=2.5;
當(dāng)P3D=OD=5時(shí),作DF⊥BC,由勾股定理,得P3F=3,
∴P3C=2;
當(dāng)P4D=OD=5時(shí),作P4G⊥OA,由勾股定理,得
DG=3,
∴OG=8.
∴P1(3,4),P2(2.5,4),P3(2,4),P4(8,4).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)銷(xiāo)售A,B兩種品牌的多媒體教學(xué)設(shè)備,這兩種多媒體教學(xué)設(shè)備的進(jìn)價(jià)和售價(jià)如表所示.
(1)若該商場(chǎng)計(jì)劃購(gòu)進(jìn)兩種多媒體教學(xué)設(shè)備若干套,共需124萬(wàn)元,全部銷(xiāo)售后可獲毛利潤(rùn)36萬(wàn)元.則該商場(chǎng)計(jì)劃購(gòu)進(jìn)A,B兩種品牌的多媒體教學(xué)設(shè)備各多少套?
(2)通過(guò)市場(chǎng)調(diào)研,該商場(chǎng)決定在(1)中所購(gòu)總數(shù)量不變的基礎(chǔ)上,減少A種設(shè)備的購(gòu)進(jìn)數(shù)量,增加B種設(shè)備的購(gòu)進(jìn)數(shù)量.若用于購(gòu)進(jìn)這兩種多媒體教學(xué)設(shè)備的總資金不超過(guò)120萬(wàn)元,且全部銷(xiāo)售后可獲毛利潤(rùn)不少于33.6萬(wàn)元.問(wèn)有幾種購(gòu)買(mǎi)方案?并寫(xiě)出購(gòu)買(mǎi)方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形中,,,分別是,的中點(diǎn),.
(1)求證:四邊形是菱形;
(2)求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,CD⊥AB,垂足為D,點(diǎn)E在BC上,EF⊥AB,垂足為F.
(1)CD與EF平行嗎?為什么?
(2)如果∠1=∠2,且∠3=120°,求∠ACB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為了解本校學(xué)生對(duì)球類(lèi)運(yùn)動(dòng)的愛(ài)好情況,采用抽樣的方法,從乒乓球、羽毛球、籃球和排球四個(gè)方面調(diào)查了若干名學(xué)生,在還沒(méi)有繪制成功的“折線(xiàn)統(tǒng)計(jì)圖”與“扇形統(tǒng)計(jì)圖”中,請(qǐng)你根據(jù)已提供的部分信息解答下列問(wèn)題.
(1)在這次調(diào)查活動(dòng)中,一共調(diào)查了 名學(xué)生,并請(qǐng)補(bǔ)全統(tǒng)計(jì)圖.
(2)“羽毛球”所在的扇形的圓心角是 度.
(3)若該校有學(xué)生1200名,估計(jì)愛(ài)好乒乓球運(yùn)動(dòng)的約有多少名學(xué)生?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某花圃用花盆培育某種花苗,經(jīng)過(guò)實(shí)驗(yàn)發(fā)現(xiàn)每盆的盈利與每盆的株數(shù)構(gòu)成一定的關(guān)系.每盆植入3株時(shí),平均單株盈利3元;以同樣的栽培條件,若每盆增加1株,平均單株盈利就減少0.5元.要使每盆的盈利達(dá)到10元,每盆應(yīng)該植多少株?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,現(xiàn)將一塊等腰直角三角板ABC放在第二象限,斜靠在兩坐上,且點(diǎn)A(0,2),點(diǎn)C(,0),如圖所示:拋物線(xiàn)經(jīng)過(guò)點(diǎn)B。
(1)求點(diǎn)B的坐標(biāo);
(2)求拋物線(xiàn)的解析式;
(3)在拋物線(xiàn)上是否還存在點(diǎn)P(點(diǎn)B除外),使△ACP仍然是以AC為直角邊的等腰直角三角形?若存在,求所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了獎(jiǎng)勵(lì)學(xué)習(xí)進(jìn)步的同學(xué),某班準(zhǔn)備購(gòu)買(mǎi)甲、乙、丙三種不同的筆記本作為獎(jiǎng)品,其單價(jià)分別為2元、3元、4元,購(gòu)買(mǎi)這些筆記本需要花60元;經(jīng)過(guò)協(xié)商,每種筆記本單價(jià)下降0.5元,只花了49元,那么以下哪個(gè)結(jié)論是正確的( )
A. 乙種筆記本比甲種筆記本少4本
B. 甲種筆記本比丙種筆記本多6本
C. 乙種筆記本比丙種筆記本多8本
D. 甲種筆記本與乙種筆記本共12本
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有A,B,C三種款式的帽子,E,F二種款式的圍巾,穿戴時(shí)小婷任意選一頂帽子和一條圍巾.
(1)用合適的方法表示搭配的所有可能性結(jié)果.
(2)求小婷恰好選中她所喜歡的A款帽子和E款圍巾的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com