【題目】如圖1,拋物線與x軸交于A,B兩點(點A在點B的左側),與y軸交于點C,直線AE:與拋物線相交于另一點E,點D為拋物線的頂點.
(1)求直線BC的解析式及點E的坐標;
(2)如圖2,直線AE上方的拋物線上有一點P,過點P作PF⊥BC于點F,過點P作平行于軸的直線交直線BC于點G,當△PFG周長最大時,在軸上找一點M,在AE上找一點N,使得值最小,請求出此時N點的坐標及的最小值;
(3)在第(2)問的條件下,點R為拋物線對稱軸上的一點,在平面直角坐標系中是否存在點S,使以點N,E,R,S為頂點的四邊形為矩形,若存在,請直接寫出點S的坐標,若不存在,請說明理由.
【答案】(1);E(,);(2)N(1,0);最小值為;
(3)S1(,),S2(,),S3(,),S4(,)
【解析】
(1)首先求出B、C兩點坐標,利用待定系數(shù)法即可求出直線BC的解析式,聯(lián)立方程即可求出點E的坐標.
(2)由△PGF∽△OBC可得:,則,當PG取最大值時,△PFG周長最大,設,進而表示出,根據(jù)二次函數(shù)最值的求法即可求出點P的坐標,作點P關于軸的對稱點P′,將直線AE繞點E逆時針方向旋轉°得直線,且滿足,過點作直線的垂線交于點K,交直線AE于點N,此時最小,求解即可.
(3)分四種情況,分別畫出示意圖,求解即可.
解:(1)由拋物線解析式得B(4,0),C(0,-2),
設直線BC解析式為:,代入B、C坐得:,
∴,,
∴BC解析式為:,
聯(lián)立,
解得;
(2)由△PGF∽△OBC可得:,
∴,
∴當PG取最大值時,△PFG周長最大,
設,
∴,
∴ ,
∵對稱軸為直線a=2,開口向下,
∴當時,PG取得最大值,即△PFG周長最大,此時P(2,),
作點P關于軸的對稱點P′(2,-),
將直線AE繞點E逆時針方向旋轉°得直線,且滿足,
過點作直線的垂線交于點K,交直線AE于點N,
此時最小,
∴直線解析式為,
直線的解析式為,
∴N點坐標為(1,0),
K點坐標為,
∴;
(3),,,.
科目:初中數(shù)學 來源: 題型:
【題目】某公司生產(chǎn)A種產(chǎn)品,它的成本是6元/件,售價是8元/件,年銷售量為5萬件.為了獲得更好的效益,公司準備拿出一定的資金做廣告,根據(jù)經(jīng)驗,每年投入的廣告費是x萬元,產(chǎn)品的年銷售量將是原銷售量的y倍,且y與x之間滿足我們學過的二種函數(shù)(即一次函數(shù)和二次函數(shù))關系中的一種,它們的關系如下表:
x(萬元) | 0 | 0.5 | 1 | 1.5 | 2 | … |
y | 1 | 1.275 | 1.5 | 1.675 | 1.8 | … |
(1)求y與x的函數(shù)關系式(不要求寫出自變量的取值范圍)
(2)如果把利潤看作是銷售總額減去成本費用和廣告費用,試求出年利潤W(萬元)與廣告費用x(萬元)的函數(shù)關系式,并計算每年投入的廣告費是多少萬元時所獲得的利潤最大?
(3)如果公司希望年利潤W(萬元)不低于14萬元,請你幫公司確定廣告費的范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:如圖1,點C在線段AB上,若滿足AC2=BCAB,則稱點C為線段AB的黃金分割點.
如圖2,△ABC中,AB=AC=1,∠A=36°,BD平分∠ABC交AC于點D.
(1)求證:點D是線段AC的黃金分割點;
(2)求出線段AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點P是邊長為5的正方形ABCD內(nèi)一點,且PB=3,BF⊥BP于B,若在射線BF上找一點M,使以點B,M,C為頂點的三角形與△ABP相似,BM的值為( )
A. 3 B. C. 3或 D. 3或5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某文具商店對文具進行組合銷售,甲種組合:2支紅色圓珠筆,4支黑色圓珠筆;乙種組合:3支紅色圓珠筆,8支黑色圓珠筆,1個筆記本;丙種組合:2支紅色圓珠筆,6支黑色圓珠筆,1個筆記本.已知紅色圓珠筆每支2元,黑色圓珠筆每支1.5元,筆記本每個10元.某個周末銷售這三種組合文具共485元,其中紅色圓珠筆的銷售額為116元,則筆記本的銷售額為________元.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】周末,小華和小亮想用所學的數(shù)學知識測量家門前小河的寬.測量時,他們選擇了河對岸邊的一棵大樹,將其底部作為點A,在他們所在的岸邊選擇了點B,使得AB與河岸垂直,并在B點豎起標桿BC,再在AB的延長線上選擇點D豎起標桿DE,使得點E與點C、A共線.
已知:CB⊥AD,ED⊥AD,測得BC=1m,DE=1.5m,BD=8.5m.測量示意圖如圖所示.請根據(jù)相關測量信息,求河寬AB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知A、B兩點的坐標分別為 (0,3),(2,0),以線段AB為直角邊,在第一象限內(nèi)作等腰直角三角形ABC,使∠BAC=90°,如果在第二象限內(nèi)有一點P(a,),且△ABP和△ABC的面積相等,則a=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,以AB為直徑的⊙O與BC相交于點D,與CA的延長線相交于點E,過點D作DF⊥AC于點F.
(1)試說明DF是⊙O的切線;
(2)若AC=3AE=6,求tanC
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠B=40°,點D在邊BC上,BD=2CD,把△ABC繞點D逆時針旋轉m(0<m<180)度后,如果點B恰好落在初始Rt△ABC的邊上,則m=_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com