【題目】如圖1,拋物線x軸交于A,B兩點(點A在點B的左側),與y軸交于點C,直線AE:與拋物線相交于另一點E,點D為拋物線的頂點.

(1)求直線BC的解析式及點E的坐標;

(2)如圖2,直線AE上方的拋物線上有一點P,過點PPFBC于點F,過點P作平行于軸的直線交直線BC于點G,當△PFG周長最大時,在軸上找一點M,在AE上找一點N,使得值最小,請求出此時N點的坐標及的最小值;

(3)在第(2)問的條件下,點R為拋物線對稱軸上的一點,在平面直角坐標系中是否存在點S,使以點N,E,R,S為頂點的四邊形為矩形,若存在,請直接寫出點S的坐標,若不存在,請說明理由.

【答案】(1);E(,);(2)N(1,0);最小值為

(3)S1,),S2,),S3,),S4,

【解析】

(1)首先求出B、C兩點坐標,利用待定系數(shù)法即可求出直線BC的解析式,聯(lián)立方程即可求出點E的坐標.
(2)PGF∽△OBC可得:,則,PG取最大值時,PFG周長最大,設,進而表示出,根據(jù)二次函數(shù)最值的求法即可求出點P的坐標,作點P關于軸的對稱點P′,將直線AE繞點E逆時針方向旋轉°得直線,且滿足,過點作直線的垂線交于點K,交直線AE于點N,此時最小,求解即可.

(3)分四種情況,分別畫出示意圖,求解即可.

解:(1)由拋物線解析式得B(4,0),C(0,-2),

設直線BC解析式為:,代入B、C坐得:,

,,

BC解析式為:,

聯(lián)立

解得;

(2)由PGF∽△OBC可得:,

,

∴當PG取最大值時,PFG周長最大,

,

,

∵對稱軸為直線a=2,開口向下,

∴當時,PG取得最大值,即PFG周長最大,此時P(2,),

作點P關于軸的對稱點P′(2,-),

將直線AE繞點E逆時針方向旋轉°得直線,且滿足

過點作直線的垂線交于點K,交直線AE于點N,

此時最小,

∴直線解析式為

直線的解析式為,

N點坐標為(1,0),

K點坐標為

;

(3),,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某公司生產(chǎn)A種產(chǎn)品,它的成本是6/件,售價是8/件,年銷售量為5萬件.為了獲得更好的效益,公司準備拿出一定的資金做廣告,根據(jù)經(jīng)驗,每年投入的廣告費是x萬元,產(chǎn)品的年銷售量將是原銷售量的y倍,且yx之間滿足我們學過的二種函數(shù)(即一次函數(shù)和二次函數(shù))關系中的一種,它們的關系如下表:

x(萬元

0

0.5

1

1.5

2

y

1

1.275

1.5

1.675

1.8

(1)求yx的函數(shù)關系式(不要求寫出自變量的取值范圍)

(2)如果把利潤看作是銷售總額減去成本費用和廣告費用,試求出年利潤W(萬元)與廣告費用x(萬元)的函數(shù)關系式,并計算每年投入的廣告費是多少萬元時所獲得的利潤最大?

(3)如果公司希望年利潤W(萬元)不低于14萬元,請你幫公司確定廣告費的范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:如圖1,點C在線段AB上,若滿足AC2=BCAB,則稱點C為線段AB的黃金分割點.

如圖2,△ABC中,AB=AC=1,∠A=36°BD平分∠ABCAC于點D

1)求證:點D是線段AC的黃金分割點;

2)求出線段AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點P是邊長為5的正方形ABCD內(nèi)一點,且PB=3,BFBPB,若在射線BF上找一點M,使以點B,M,C為頂點的三角形與ABP相似,BM的值為( )

A. 3 B. C. 3 D. 35

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某文具商店對文具進行組合銷售,甲種組合:2支紅色圓珠筆,4支黑色圓珠筆;乙種組合:3支紅色圓珠筆,8支黑色圓珠筆,1個筆記本;丙種組合:2支紅色圓珠筆,6支黑色圓珠筆,1個筆記本.已知紅色圓珠筆每支2元,黑色圓珠筆每支1.5元,筆記本每個10元.某個周末銷售這三種組合文具共485元,其中紅色圓珠筆的銷售額為116元,則筆記本的銷售額為________元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】周末,小華和小亮想用所學的數(shù)學知識測量家門前小河的寬.測量時,他們選擇了河對岸邊的一棵大樹,將其底部作為點A,在他們所在的岸邊選擇了點B,使得AB與河岸垂直,并在B點豎起標桿BC,再在AB的延長線上選擇點D豎起標桿DE,使得點E與點C、A共線.

已知:CBAD,EDAD,測得BC=1m,DE=1.5m,BD=8.5m.測量示意圖如圖所示.請根據(jù)相關測量信息,求河寬AB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知A、B兩點的坐標分別為 0,3),(20),以線段AB為直角邊,在第一象限內(nèi)作等腰直角三角形ABC,使∠BAC90°,如果在第二象限內(nèi)有一點Pa),且△ABP和△ABC的面積相等,則a_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,AB=AC,以AB為直徑的⊙OBC相交于點D,與CA的延長線相交于點E,過點DDFAC于點F.

(1)試說明DF是⊙O的切線;

(2)AC=3AE=6,求tanC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,∠B=40°,點D在邊BC上,BD=2CD,把△ABC繞點D逆時針旋轉m(0<m<180)度后,如果點B恰好落在初始Rt△ABC的邊上,則m_____

查看答案和解析>>

同步練習冊答案