【題目】將大小相同的正三角形按如圖所示的規(guī)律拼圖案,其中第①個(gè)圖案中有6個(gè)小三角形和1個(gè)正六邊形;第②個(gè)圖案中有10個(gè)小三角形和2個(gè)正六邊形;第③個(gè)圖案中有14個(gè)小三角形和3個(gè)正六邊形;…;按此規(guī)律排列下去,已知一個(gè)小三角形的面積為a,一個(gè)正六邊形的面積為b,則第⑧個(gè)圖案中所有的小三角形和正六邊形的面積之和為____________.(結(jié)果用含a、b的代數(shù)式表示)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,AB=3cm,BC=4cm,點(diǎn)E是BC上一點(diǎn),且CE=1cm.點(diǎn)P由點(diǎn)C出發(fā),沿CD方向向點(diǎn)D勻速運(yùn)動(dòng),速度為1cm/s;點(diǎn)Q由點(diǎn)A出發(fā),沿AD方向向點(diǎn)D勻速運(yùn)動(dòng),速度為cm/s,點(diǎn)P,Q同時(shí)出發(fā),PQ交BD于F,連接PE,QB,設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<3).
(1)當(dāng)t為何值時(shí),PE∥BD?
(2)設(shè)△FQD的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式.
(3)是否存在某一時(shí)刻t,使得四邊形BQPE的周長最。舸嬖冢蟪龃怂倪呅BQPE的面積;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系 中,函數(shù)的圖象與直線交于點(diǎn)A(3,m).
(1)求k、m的值;
(2)已知點(diǎn)P(n,n)(n>0),過點(diǎn)P作平行于軸的直線,交直線y=x-2于點(diǎn)M,過點(diǎn)P作平行于y軸的直線,交函數(shù) 的圖象于點(diǎn)N.
①當(dāng)n=1時(shí),判斷線段PM與PN的數(shù)量關(guān)系,并說明理由;
②若PN≥PM,結(jié)合函數(shù)的圖象,直接寫出n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角三角形ABC中,AB=AC=2,∠BAC=90°,點(diǎn)D是AC的中點(diǎn),點(diǎn)P是BC邊上的動(dòng)點(diǎn),連接PA、PD.則PA+PD的最小值為( )
A.B.C.D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于點(diǎn)A(2,3),B(﹣3,n)兩點(diǎn),與x軸交于點(diǎn)C.
(1)求直線和雙曲線的函數(shù)關(guān)系式.
(2)若kx+b﹣<0,請(qǐng)根據(jù)圖象直接寫出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB為⊙O的直徑,過點(diǎn)A作AD平分∠BAC交⊙O于點(diǎn)D,過點(diǎn)D作BC的平行線分別交AC、AB的延長線于點(diǎn)E、F,DG⊥AB于點(diǎn)G,連接BD.
(1)求證:△AED∽△DGB;
(2)求證:EF是⊙O的切線;
(3)若,OA=4,求劣弧的長度(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小帆同學(xué)根據(jù)函數(shù)的學(xué)習(xí)經(jīng)驗(yàn),對(duì)函數(shù)進(jìn)行探究,已知函數(shù)過,,.
(1)求函數(shù)解析式;
(2)如圖1,在平面直角坐標(biāo)系中畫的圖象,根據(jù)函數(shù)圖象,寫出函數(shù)的一條性質(zhì) ;
(3)結(jié)合函數(shù)圖象回答下列問題:
①方程的近似解的取值范圍(精確到個(gè)位)是 ;
②若一次函數(shù)與有且僅有兩個(gè)交點(diǎn),則的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AC平分∠BCD,AC⊥AB,E是BC的中點(diǎn),AD⊥AE.
(1)求證:AC2=CD·BC;
(2)過E作EG⊥AB,并延長EG至點(diǎn)K,使EK=EB.
①若點(diǎn)H是點(diǎn)D關(guān)于AC的對(duì)稱點(diǎn),點(diǎn)F為AC的中點(diǎn),求證:FH⊥GH;
②若∠B=30°,求證:四邊形AKEC是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,O是對(duì)角線BD的中點(diǎn),過點(diǎn)O的直線EF分別交DA,BC的延長線于E,F.
(1)求證:AE=CF;
(2)若AE=BC,試探究線段OC與線段DF之間的關(guān)系,并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com