【題目】如圖,ABCD中,∠A45°,連接BD,且BDAD,點E、點F分別是ABCD上的點,連接EFBD于點O,且EFCD,BEDF1

1)求EF的長;

2)直接寫出ABCD的面積   

【答案】12;(28

【解析】

1)根據(jù)平行四邊形的性質(zhì)和等腰直角三角形的性質(zhì)解答即可;

2)根據(jù)等腰直角三角形的性質(zhì)和平行四邊形的面積公式解答即可.

解:(1)∵∠A45°,BDAD

∴△ABD是等腰直角三角形,

∴∠DBA45°,ADDB

∵四邊形ABCD是平行四邊形,

CDAB,

∠CDB=∠DBA=45°,

EFCD

EFAB,

∴△OEB是等腰直角三角形,DFO是等腰直角三角形,

DFBE1,

OEBE1,OFDF1

EF2;

2)∵△OEBDFO是等腰直角三角形,

OEEBOFDF1,

ODOB

DB2,

∵△ADB是等腰直角三角形,

AB

ABCD的面積=ABEF4×28

故答案為:8

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】新龜兔賽跑的故事:龜兔從同一地點同時出發(fā)后,兔子很快把烏龜遠遠甩在后頭.驕傲自滿的兔子覺得自己遙遙領(lǐng)先,就躺在路邊呼呼大睡起來.當它一覺醒來,發(fā)現(xiàn)烏龜已經(jīng)超過它,于是奮力直追,最后同時到達終點.用S1、S2分別表示烏龜和兔子賽跑的路程,t為賽跑時間,則下列圖象中與故事情節(jié)相吻合的是(  )

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】鐘南山院士談到防護新型冠狀病毒肺炎時說:我們需要重視防護,但也不必恐慌,盡量少去人員密集的場所,出門戴口罩,在室內(nèi)注意通風,勤洗手,多運動,少熬夜.某社區(qū)為了加強社區(qū)居民對新型冠狀病毒肺炎防護知識的了解,通過微信群宣傳新型冠狀病毒肺炎的防護知識,并鼓勵社區(qū)居民在線參與作答《2020年新型冠狀病毒防治全國統(tǒng)一考試(全國卷)》試卷(滿分100分),社區(qū)管理員隨機從有400人的某小區(qū)抽取40名人員的答卷成績,并對他們的成績(單位:分)統(tǒng)計如下:

85 80 95 100 90 95 85 65 75 85

90 90 70 90 100 80 80 90 95 75

80 60 80 95 85 100 90 85 85 80

95 75 80 90 70 80 95 75 100 90

根據(jù)數(shù)據(jù)繪制了如下的表格和統(tǒng)計圖:

根據(jù)上面提供的信息,回答下列問題:

1)統(tǒng)計表中的a   b   ;c= ,d=

2)請補全條形統(tǒng)計圖;

3)根據(jù)抽樣調(diào)查結(jié)果,請估計該小區(qū)答題成績?yōu)?/span>C的有多少人?

4)該社區(qū)有2名男管理員和2名女管理員,現(xiàn)從中隨機挑選2名管理員參加社區(qū)防控宣傳活動,請用樹狀圖法或列表法求出恰好選中“11的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線ly=x,過點A(0,1)y軸的垂線交直線l于點B,過點B作直線l的垂線交y軸于點A1;過點A1y軸的垂線交直線l于點B1,過點B1作直線l的垂線交y軸于點A2;……按此作法繼續(xù)下去,則點A2020的坐標為______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為的正方形中,P是對角線上的一個動點(點PA、C不重合),連接,將繞點B順時針旋轉(zhuǎn)90°,連接,交于點E延長線與(或延長線)交于點F

1)連接,證明:

2)設(shè),試寫出y關(guān)于x的函數(shù)關(guān)系式,并求當x為何值時,;

3)猜想的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)問題探究:如圖1所示,有公共頂點A的兩個正方形ABCD和正方形AEFGAEAB,連接BEDG,請判斷線段BE與線段DG之間有怎樣的數(shù)量關(guān)系和位置關(guān)系.并請說明理由.

2)理解應(yīng)用:如圖2所示,有公共頂點A的兩個正方形ABCD和正方形AEFG,AEAB,AB10,將正方形AEFG繞點A在平面內(nèi)任意旋轉(zhuǎn),當∠ABE15°,且點D、E、G三點在同一條直線上時,請直接寫出AE的長   ;

3)拓展應(yīng)用:如圖3所示,有公共頂點A的兩個矩形ABCD和矩形AEFG,AD4,AB4AG4,AE4,將矩形AEFG繞點A在平面內(nèi)任意旋轉(zhuǎn),連接BDDE,點MN分別是BD,DE的中點,連接MN,當點D、E、G三點在同一條直線上時,請直接寫出MN的長   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖①,在矩形中,,垂足是.是點關(guān)于的對稱點,連接

1)求的長;

2)若將沿著射線方向平移,設(shè)平移的距離為(平移距離指點沿方向所經(jīng)過的線段長度).當點分別平移到線段上時,直接寫出相應(yīng)的的值.

3)如圖②,將繞點順時針旋轉(zhuǎn)一個角,記旋轉(zhuǎn)中,在旋轉(zhuǎn)過程中,設(shè)所在的直線與直線交于點,與直線交于點.是否存在這樣的兩點,使為等腰三角形?若存在,求出此時的長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,拋物線正半軸于點,將拋物線先向右平移個單位,再向下平移個單位得到拋物線交于點,直線于點

1)求拋物線的解析式;

2)點是拋物線(含端點)間的一點,作軸交拋物線于點,連按,.當的面積為時, 求點的坐標;

3)如圖②,將直線向上平移,交拋物線于點,交拋物線于點、,試判斷的值是否為定值,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象與軸的交點坐標為

1)求(用的代數(shù)式表示);

2)若在自變量的值滿足的情況下,與其對應(yīng)的函數(shù)值的最大值為1,求的值;

3)已知點和點.若二次函數(shù)的圖象與線段有兩個不同的交點,直接寫出的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案