【題目】某中學八年級學生在寒假期間積極抗擊疫情,開展老師“在你身邊”評星活動,學生可以從“自理星” 、“讀書星”、“健康星”、“孝敬星”、“ 勞動星”等中選一個項目參加爭星競選,根據(jù)該校八年級學生的“爭星”報名情況,繪制成了如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中信息回答下列問題:
(1)參加年級評星的學生共有________人;將條形統(tǒng)計圖補充完整;
(2)扇形統(tǒng)計圖中“讀書星”對應的扇形圓心角度數(shù)是________;
(3)若八年級1班準備推薦甲、乙、丙、丁四名同學中的2名代表班級參加學校的“勞動星” 報名,請用表格或樹狀圖分析甲和乙同學同時被選中的概率.
【答案】(1),見解析;(2);(3)
【解析】
(1)A項目人數(shù)除以所占比例可得總?cè)藬?shù);求出“自理星”的人數(shù),補全條形統(tǒng)計圖即可;
(2)360°乘以讀書星人數(shù)所占比例可得;
(3)畫樹狀圖得出所有12種等可能的結(jié)果數(shù),找出同時選中甲、乙兩名同學的結(jié)果數(shù),然后根據(jù)概率公式求解.
解:(1)參加調(diào)查的學生共有8÷16%=50人,
故答案為:50;
“自理星”的人數(shù)為50×30%=15人,
補全條形統(tǒng)計圖如下:
(2)扇形統(tǒng)計圖中“讀書星”對應的扇形圓心角度數(shù)為360°×=72°,
故答案為:72°;
(3)畫樹狀圖為:
共有12種等可能的結(jié)果數(shù),其中甲和乙同學同時被選中的結(jié)果數(shù)為2,
所以甲和乙同學同時被選中的概率==
【點晴】
本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.也考查了統(tǒng)計圖.
科目:初中數(shù)學 來源: 題型:
【題目】問題探究
(1)如圖①,已知與直線,過作于點,,的半徑為,則圓上一點到的距離的最小值是______;
(2)如圖②,在四邊形中,,,,,過點作一條直線交邊或于,若平分四邊形的面積,求的長;
問題解決
(3)如圖③所示,是由線段、、與弧圍成的花園的平面示意圖,,,//,CD⊥BC,點為的中點,所對的圓心角為.管理人員想在上確定一點,在四邊形區(qū)域種植花卉,其余區(qū)域種植草坪,并過點修建一條小路,把四邊形分成面積相等且盡可能小的兩部分,分別種植不同的花卉.問是否存在滿足上述條件的小路?若存在,請求出的長,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線與軸相交于兩點,點坐標為,拋物線的對稱軸是直線
(1)求拋物線的解析式;
(2)點是軸右側(cè)拋物線圖像上的一動點,設(shè)點的橫坐標為.
①是否存在這樣的點使得?若存在,求出的值;若不存在,請說明理由;
②若該動點在第一象限內(nèi),連接,當時,求的值
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在矩形紙片中,,,折疊紙片使點落在邊上的處,拆痕為.過點作交于,連接.
(1)求證:四邊形為菱形;
(2)當點在邊上移動時,折痕的端點、也隨之移動;
①當點與點重合時(如圖2),求菱形的邊長;
②若限定、分別在邊、上移動,求的內(nèi)切圓半徑的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在中,,點,分別是邊,上的點,且.
(1)若,,設(shè),,求關(guān)于的函數(shù)關(guān)系式;
(2)如圖②,,于點,于點,于點,點在線段上,,,,,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①b2﹣4ac>0;②abc<0;③4a+b=0;④4a﹣2b+c>0.其中正確結(jié)論的個數(shù)是( 。
A.4B.3C.2D.1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,C是⊙O上的一點,D是AB上的一點,DE⊥AB于D,DE交BC于F,且EF=EC.
(1)求證:EC是⊙O的切線;
(2)若BD=4,BC=8,圓的半徑OB=5,求切線EC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】光明中學八年級一班開展了“讀一本好書”的活動,委會對學生閱讀書籍的情況行了問卷調(diào)查,問卷設(shè)置了“小說”、“戲劇”、“散文”“其他”四個類別,每位同學僅選一項,根據(jù)調(diào)查結(jié)果繪制了不完整的頻數(shù)分布直方圖和扇形統(tǒng)計圖.根據(jù)圖表提供的信息,回答下列問題:
(1)八年級一班有多少名學生?
(2)請補全頻數(shù)分布直方圖,在扇形統(tǒng)計圖中,“戲劇”類對應的扇形圓心角是多少度?
(3)在調(diào)查問卷中,甲、乙、丙、丁四位同學選擇了“戲劇”類,現(xiàn)從中任意選出名同學參加學校的戲劇社團,請用畫樹狀圖或列表的方法,求選取的人恰好是甲和丙的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是一垂直于水平面的建筑物,某同學從建筑物底端B出發(fā),先沿水平方向向右行走20米到達點C,再經(jīng)過一段坡度(或坡比)為i=1:0.75、坡長為10米的斜坡CD到達點D,然后再沿水平方向向右行走40米到達點E(A,B,C,D,E均在同一平面內(nèi)).在E處測得建筑物頂端A的仰角為24°,則建筑物AB的高度約為(參考數(shù)據(jù):sin24°≈0.41,cos24°≈0.91,tan24°=0.45)( )
A. 21.7米 B. 22.4米 C. 27.4米 D. 28.8米
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com