【題目】已知,等腰ABC和等腰ADE中,∠BAC=∠DAE90°

1)如圖1,求證:DBCE;

2)如圖2.求證:SACDSABE

【答案】1)見解析;(2)見解析.

【解析】

1)根據(jù)SAS證明△BAD≌△CAE即可解決問題;

2)如圖2中,取CD的中點(diǎn)M,連接AM,延長AMN,使得MNAM,連接DN,CN.首先證明四邊形ACND是平行四邊形,再證明△BAE≌△ACN即可.

1)證明:如圖1中,

∵等腰△ABC和等腰△ADE中,∠BAC=∠DAE90°,

ABAC,ADAD,∠BAD=∠CAE,

∴△BAD≌△CAESAS),

BDCE

2)證明:如圖2中,取CD的中點(diǎn)M,連接AM,延長AMN,使得MNAM,連接DNCN

AMMN,DMCM,

∴四邊形ACND是平行四邊形,

ADCN,ADCN,

∴∠DAC+ACN180°,

∵∠BAC=∠EAD90°,

∴∠BAE+DAC180°,

∴∠BAE=∠ACN,

ABACAEADCN,

∴△BAE≌△ACNSAS),

SBAESACN,

DNAC,

SADCSACN,

SBAESADC

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△OAB中,∠OBA=90°,且點(diǎn)B的坐標(biāo)為(0,4).

(1)寫出點(diǎn)A的坐標(biāo).
(2)畫出△OAB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后的△OA1B1;
(3)求點(diǎn)A旋轉(zhuǎn)到點(diǎn)A1所經(jīng)過的路線長(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知兩個(gè)變量之間的變化情況如圖所示,根據(jù)圖像回答下列問題.

(1)寫出的變化范圍;

(2)當(dāng)時(shí),求的對應(yīng)值;

(3)當(dāng)為何值時(shí),的值最大;

(4)當(dāng)在什么范圍時(shí),的值在不斷增加.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明騎單車上學(xué)當(dāng)他騎了一段路時(shí),想起要買某本書,于是又折回到剛經(jīng)過的某書店,買到書后繼續(xù)去學(xué)校以下是他本次上學(xué)所用的時(shí)間與路程的關(guān)系示意圖

根據(jù)圖中提供的信息回答下列問題

1小明家到學(xué)校的路程是________

2)小明在書店停留了___________分鐘

3)本次上學(xué)途中,小明一共行駛了________ 一共用了______ 分鐘

4)在整個(gè)上學(xué)的途中_________(哪個(gè)時(shí)間段)小明騎車速度最快,最快的速度是___________/

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),A22),B4,﹣3),Px軸上的一點(diǎn).

1)若PA+PB的值最小,求P點(diǎn)的坐標(biāo);

2)若APO=∠BPO

求此時(shí)P點(diǎn)的坐標(biāo);

y軸上是否存在點(diǎn)Q,使得QAB的面積等于PAB的面積,若存在,求出Q點(diǎn)坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A、B是數(shù)軸上的兩個(gè)點(diǎn),它們分別表示的數(shù)是1 點(diǎn)A與點(diǎn)B之間的距離表示為AB

1AB=

2)點(diǎn)P是數(shù)軸上A點(diǎn)右側(cè)的一個(gè)動(dòng)點(diǎn),它表示的數(shù)是,滿足,求的值.

3)點(diǎn)C6 若點(diǎn)A以每秒1個(gè)單位長度的速度向左運(yùn)動(dòng),同時(shí),點(diǎn)B和點(diǎn)C分別以每秒2個(gè)單位長度和5個(gè)單位長度的速度向右運(yùn)動(dòng).請問:的值是否隨著運(yùn)動(dòng)時(shí)間t(秒)的變化而改變? 若變化,請說明理由;若不變,請求其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在下列三角形中,若ABAC , 則能被一條直線分成兩個(gè)小等腰三角形的是( )

A.①②③
B.①②④
C.②③④
D.①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰△ABC中,AB=AC,BC=8,∠BAC=120°,作ADBC于點(diǎn)DAD=AB,點(diǎn)E為邊AC上的中點(diǎn),點(diǎn)PBC上一動(dòng)點(diǎn),則PA+PE的最小值為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為2的等邊△ABC中,DBC的中點(diǎn),點(diǎn)E在線段AD上,連結(jié)BE,在BE的下方作等邊△BEF,連結(jié)DF.當(dāng)△BDF的周長最小時(shí),∠DBF的度數(shù)是_____

查看答案和解析>>

同步練習(xí)冊答案