如圖,D、E為△ABC兩邊AB、AC的中點(diǎn),將△ABC沿線段DE折疊,使點(diǎn)A落在點(diǎn)F處,若∠B=55°,求∠BDF度數(shù).
分析:首先根據(jù)相似三角形的判定與性質(zhì)得出△ADE∽△ABC,得出∠ADE=∠B,則DE∥BC,即可得出∠BDF=180°-2∠B求出即可.
解答:解:∵D、E為AB、AC的中點(diǎn),
AD
AB
=
AE
AC
=
1
2
,且∠A=∠A
∴△ADE∽△ABC,
∴∠ADE=∠B,
∴DE∥BC,
∴∠ADE=∠B=55°,且∠ADE=∠EDF,
∴∠BDF=180°-2∠B=70°.
點(diǎn)評:本題考查了圖形翻折變換的性質(zhì),解題過程中應(yīng)注意折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

19、如圖,D、E為AB、AC的中點(diǎn),將△ABC沿線段DE折疊,使點(diǎn)A落在點(diǎn)F處,若∠B=50°,則∠BDF=
80
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,矩形ABCD中,點(diǎn)M從A點(diǎn)出發(fā)在線段AB上作勻速運(yùn)動(不與A、B重合),同時點(diǎn)N從B點(diǎn)出發(fā)在線段BC上作勻速運(yùn)動.
(1)如圖1,若M為AB中點(diǎn),且DM⊥MN.請在圖中找出兩對相似三角形:
 
 
_,②
 
 
,選擇其中一對加以證明;
(2)①如圖2,若AB=5,BC=3點(diǎn)M的速度為1個單位長度/秒,點(diǎn)N的速度為
12
個單位長度/秒,運(yùn)動的時間為t秒.當(dāng)t為何值時,△DAM與△MBN相似?請說明理由;
②如果把點(diǎn)N的速度改為a個單位長度/秒,其它條件不變,是否存在a的值,使得△DAM與△MBN和△DCN這兩個三角形都相似?若存在,請求出a的值;若不存在,請說明理由.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖已知點(diǎn)C為AB上一點(diǎn),AC=12cm,CB=
23
AC,D、E分別為AC、AB的中點(diǎn),求DE的長.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在矩形ABCD中,AB=6,BC=8,G為邊AD的中點(diǎn).
(1)如圖1,若E為AB上的一個動點(diǎn),當(dāng)△CGE的周長最小時,求AE的長.
(2)如圖2,若E、F為邊AB上的兩個動點(diǎn),且EF=4,當(dāng)四邊形CGEF的周長最小時,求AF的長.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•莆田)在Rt△ABC,∠C=90°,D為AB邊上一點(diǎn),點(diǎn)M、N分別在BC、AC邊上,且DM⊥DN.作MF⊥AB于點(diǎn)F,NE⊥AB于點(diǎn)E.
(1)特殊驗(yàn)證:如圖1,若AC=BC,且D為AB中點(diǎn),求證:DM=DN,AE=DF;
(2)拓展探究:若AC≠BC.
①如圖2,若D為AB中點(diǎn),(1)中的兩個結(jié)論有一個仍成立,請指出并加以證明;
②如圖3,若BD=kAD,條件中“點(diǎn)M在BC邊上”改為“點(diǎn)M在線段CB的延長線上”,其它條件不變,請?zhí)骄緼E與DF的數(shù)量關(guān)系并加以證明.

查看答案和解析>>

同步練習(xí)冊答案