【題目】目前使用節(jié)能燈照明已經(jīng)基本普及,某商場計劃購進甲,乙兩種節(jié)能燈共1200只,這兩種節(jié)能燈的進價、售價如表:

進價(元/只)

售價(元/只)

甲型

25

30

乙型

45

60

1)若商場某一天銷售節(jié)能燈中,銷售甲型的只數(shù)是乙型的只數(shù)的3倍,銷售所收的款是9000元,問這天銷售節(jié)能燈為多少只?

2)若商場購進節(jié)能燈的貨款為38000元時,商場銷售完節(jié)能燈所得利潤為多少元?

【答案】1)這天銷售節(jié)能燈為240只;(2)商場銷售完節(jié)能燈所得利潤為10000元.

【解析】

1)根據(jù)題意和表格中的數(shù)據(jù)可以列出相應的方程,從而可以得到這天銷售節(jié)能燈為多少只;

2)根據(jù)題意和表格中的數(shù)據(jù)可以列出相應的方程,從而可以得到商場購進甲種和乙種節(jié)能燈的只數(shù),然后再根據(jù)表格中的數(shù)據(jù)即可得到商場銷售完節(jié)能燈所得利潤為多少元.

1)設這天銷售的乙型的節(jié)能燈為只,則甲型節(jié)能燈為

解得,

(只)

答:這天銷售節(jié)能燈為只.

2)設商場購進甲種節(jié)能燈為只,則乙種節(jié)能燈為

解得,

利潤為:(元)

答:商場銷售完節(jié)能燈所得利潤為元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,AB=CD,對角線AC,BD相交于點O,AEBD于點E,CFBD于點F,連接AF,CE,若DE=BF,則下列結論:CF=AE;OE=OF;四邊形ABCD是平行四邊形;圖中共有四對全等三角形.其中正確結論的個數(shù)是

A.4 B.3 C2 D.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,將一副含30°45°角的三角尺放置在直線上.

1)將圖1中的三角尺繞點順時針方向旋轉至如圖2所示的位置,在射線上,此時旋轉的角度為度;

2)將圖2中的三角尺繞點順時針方向旋轉).

①如圖3,當的內部時,求的值;

②若旋轉的速度為每秒15°,經(jīng)過秒,當三角尺與三角尺的重疊部分以為頂點的角的度數(shù)為30°時,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,點C在⊙O上,AD垂直于過點C的切線,垂足為D,且∠BAD=80°,則∠DAC的度數(shù)是_____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正方形按如圖所示的方式放置,點.. 分別在直線x軸上,已知點,則Bn的坐標是____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線 AB與坐標軸交與點, 動點P沿路線運動.

(1)求直線AB的表達式;

(2)當點POB上,使得AP平分時,求此時點P的坐標;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校260名學生參加植樹活動,要求每人植4~7,活動結束后隨機抽查了若干名學生每人的植樹量,并分為四種類型, A:4棵;B:5棵;C:6棵;D:7,將各類的人數(shù)繪制成扇形圖(如圖1)和條形圖(如圖2),請回答下列問題:

(1)在這次調查中D類型有多少名學生?

(2)寫出被調查學生每人植樹量的眾數(shù)、中位數(shù);

(3)求被調查學生每人植樹量的平均數(shù),并估計這260名學生共植樹多少棵?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法:①垂直于同一直線的兩條直線互相平行;②兩個無理數(shù)的和是無理數(shù);③點一定不在第四象限;④平方根等于本身的數(shù)是;⑤若點的坐標滿足,則點落在原點上;⑥如果兩個角的角平分線互為反向延長線,則這兩個角為對頂角.正確個數(shù)是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知、三點在同一條直線上,平分,平分.

1)若,求

2)若,求

3是否隨的度數(shù)的變化而變化?如果不變,度數(shù)是多少?請你說明理由,如果變化,請說明如何變化.

查看答案和解析>>

同步練習冊答案