【題目】如圖,在中,,平分,、分別是、上的動(dòng)點(diǎn),當(dāng)最小時(shí),的度數(shù)為(  )

A.B.C.D.

【答案】B

【解析】

AC上截取AE=AN,先證明AME≌△AMNSAS),推出ME=MN.當(dāng)BM、E共線(xiàn),BEAC時(shí),BM+ME最小,可求出∠NME的度數(shù),從而求出∠BMN的度數(shù).

如圖,在AC上截取AE=AN,

∵∠BAC的平分線(xiàn)交BC于點(diǎn)D

∴∠EAM=NAM,

AMEAMN中,

,

∴△AME≌△AMNSAS),

ME=MN

BM+MN=BM+ME,

當(dāng)BME共線(xiàn),BEAC時(shí),BM+ME最小,

MNAB

∵∠BAC=68°

∴∠NME=360°-BAC-MEA-MNA=360°-68°-90°-90°=112°,

∴∠BMN=180°-112°=68°

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,,,若點(diǎn)從點(diǎn)出發(fā)以/的速度向點(diǎn)運(yùn)動(dòng),點(diǎn)從點(diǎn)出發(fā)以/的速度向點(diǎn)運(yùn)動(dòng),設(shè)分別從點(diǎn)、同時(shí)出發(fā),運(yùn)動(dòng)的時(shí)間為

1)求、的長(zhǎng)(用含的式子表示)

2)當(dāng)為何值時(shí),是以為底邊的等腰三角形?

3)當(dāng)為何值時(shí),//

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰中,,,邊上的中點(diǎn),點(diǎn)分別是邊,上的動(dòng)點(diǎn),點(diǎn)從頂點(diǎn)沿方向作勻速運(yùn)動(dòng),點(diǎn)從從頂點(diǎn)沿方向同時(shí)出發(fā),且它們的運(yùn)動(dòng)速度相同,連接

1)求證:

2)判斷線(xiàn)段的位置及數(shù)量關(guān)系,并說(shuō)明理由.

3)在運(yùn)動(dòng)過(guò)程中,的面積之和是否為定值?若是,請(qǐng)求出這個(gè)定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過(guò)點(diǎn)(﹣1,0),對(duì)稱(chēng)軸為直線(xiàn)x=2,下列結(jié)論:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若點(diǎn)A(﹣3,y1)、點(diǎn)B(﹣,y2)、點(diǎn)C(,y3)在該函數(shù)圖象上,則y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣1<5<x2.其中正確的結(jié)論有( 。

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于二次函數(shù)有下列說(shuō)法:

如果當(dāng)x≤1時(shí)的增大而減小,則m1;

如果它的圖象與x軸的兩交點(diǎn)的距離是4,;

如果將它的圖象向左平移3個(gè)單位后的函數(shù)的最小值是-4m=-1;

如果當(dāng)x=1時(shí)的函數(shù)值與x=2013時(shí)的函數(shù)值相等則當(dāng)x=2014時(shí)的函數(shù)值為-3

其中正確的說(shuō)法是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)y=﹣x2+bx+c和直線(xiàn)y=x+1交于A,B兩點(diǎn),點(diǎn)Ax軸上,點(diǎn)B在直線(xiàn)x=3上,直線(xiàn)x=3x軸交于點(diǎn)C

(1)求拋物線(xiàn)的解析式;

(2)點(diǎn)P從點(diǎn)A出發(fā),以每秒個(gè)單位長(zhǎng)度的速度沿線(xiàn)段AB向點(diǎn)B運(yùn)動(dòng),點(diǎn)Q從點(diǎn)C出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿線(xiàn)段CA向點(diǎn)A運(yùn)動(dòng),點(diǎn)P,Q同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0).以PQ為邊作矩形PQNM,使點(diǎn)N在直線(xiàn)x=3上.

①當(dāng)t為何值時(shí),矩形PQNM的面積最小?并求出最小面積;

②直接寫(xiě)出當(dāng)t為何值時(shí),恰好有矩形PQNM的頂點(diǎn)落在拋物線(xiàn)上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列是中心對(duì)稱(chēng)圖形但不是軸對(duì)稱(chēng)圖形的是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)y=ax2+cx軸交于A、B兩點(diǎn),頂點(diǎn)為C,點(diǎn)P在拋物線(xiàn)上,且P(1,﹣3),B(4,0)

(1)點(diǎn)A的坐標(biāo)是   ;

(2)求該拋物線(xiàn)的解析式;

(3)直接寫(xiě)出該拋物線(xiàn)的頂點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某藥廠銷(xiāo)售部門(mén)根據(jù)市場(chǎng)調(diào)研結(jié)果,對(duì)該廠生產(chǎn)的一種新型原料藥未來(lái)兩年的銷(xiāo)售進(jìn)行預(yù)測(cè),井建立如下模型:設(shè)第t個(gè)月該原料藥的月銷(xiāo)售量為P(單位:噸),Pt之間存在如圖所示的函數(shù)關(guān)系,其圖象是函數(shù)P=(0<t≤8)的圖象與線(xiàn)段AB的組合;設(shè)第t個(gè)月銷(xiāo)售該原料藥每噸的毛利潤(rùn)為Q(單位:萬(wàn)元),Qt之間滿(mǎn)足如下關(guān)系:Q=

(1)當(dāng)8<t≤24時(shí),求P關(guān)于t的函數(shù)解析式;

(2)設(shè)第t個(gè)月銷(xiāo)售該原料藥的月毛利潤(rùn)為w(單位:萬(wàn)元)

①求w關(guān)于t的函數(shù)解析式;

②該藥廠銷(xiāo)售部門(mén)分析認(rèn)為,336≤w≤513是最有利于該原料藥可持續(xù)生產(chǎn)和銷(xiāo)售的月毛利潤(rùn)范圍,求此范圍所對(duì)應(yīng)的月銷(xiāo)售量P的最小值和最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案