【題目】對(duì)于二次函數(shù)y=x2﹣2mx﹣3,有下列結(jié)論:
①它的圖象與x軸有兩個(gè)交點(diǎn);
②如果當(dāng)x≤﹣1時(shí),y隨x的增大而減小,則m=﹣1;
③如果將它的圖象向左平移3個(gè)單位后過原點(diǎn),則m=1;
④如果當(dāng)x=2時(shí)的函數(shù)值與x=8時(shí)的函數(shù)值相等,則m=5.
其中一定正確的結(jié)論是_______.(把你認(rèn)為正確結(jié)論的序號(hào)都填上)
【答案】①③④
【解析】
①利用根的判別式△>0判定即可;
②根據(jù)二次函數(shù)的增減性利用對(duì)稱軸列不等式求解即可;
③根據(jù)向左平移橫坐標(biāo)減求出平移前的點(diǎn)的坐標(biāo),然后代入函數(shù)解析式計(jì)算即可求出m的值;
④根據(jù)二次函數(shù)的對(duì)稱性求出對(duì)稱軸,再求出m的值,然后把x=2012代入函數(shù)關(guān)系式計(jì)算即可得解.
解:①∵△=(﹣2m)2﹣4×1×(﹣3)=4m2+12>0,
∴它的圖象與x軸有兩個(gè)公共點(diǎn),故本小題正確;
②∵當(dāng)x≤﹣1時(shí)y隨x的增大而減小,
∴對(duì)稱軸直線x=﹣≤﹣1,
解得m≤﹣1,故本小題錯(cuò)誤;
③∵將它的圖象向左平移3個(gè)單位后過原點(diǎn),
∴平移前的圖象經(jīng)過點(diǎn)(3,0),
代入函數(shù)關(guān)系式得,32﹣2m3﹣3=0,
解得m=1,故本小題正確;
④∵當(dāng)x=2時(shí)的函數(shù)值與x=8時(shí)的函數(shù)值相等,
∴對(duì)稱軸為直線x= =5,
∴﹣ =5,
解得m=5,故本小題正確;
綜上所述,結(jié)論正確的是①④共2個(gè).
故答案是:①③④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小河上有一拱橋,拱橋及河道的截面輪廓線由拋物線的一部分ACB和
矩形的三邊AE,ED,DB組成,已知河底ED是水平的,ED=16m,AE=8m,拋物線的頂點(diǎn)C到ED的
距離是11m,以ED所在的直線為x軸,拋物線的對(duì)稱軸為y軸建立平面直角坐標(biāo)系.
(1)求拋物線的解析式;
(2)已知從某時(shí)刻開始的40h內(nèi),水面與河底ED的距離h(單位:m)隨時(shí)間t(單位:h)的變化滿足函數(shù)
關(guān)系且當(dāng)水面到頂點(diǎn)C的距離不大于5m時(shí),需禁止船只通行,請(qǐng)通過計(jì)算說明:在這一時(shí)段內(nèi),需多少小時(shí)禁止船只通行?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,∠A=30°,BC=6,D,E分別是AB,AC邊的中點(diǎn),將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°到△A′BC′的位置,則整個(gè)旋轉(zhuǎn)過程中線段DE所掃過部分的面積(即圖中陰影部分面積)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地要建造一個(gè)圓形噴水池,在水池中央垂直于地面安裝一個(gè)柱子OA,O恰為水面中心,安置在柱子頂端A處的噴頭向外噴水,水流在各個(gè)方向上沿形狀相同的拋物線路徑落下.在過OA的任一平面上,建立平面直角坐標(biāo)系(如圖),水流噴出的高度y(m)與水平距離x(m)之間的關(guān)系式是y=﹣x2+2x+,則下列結(jié)論:
(1)柱子OA的高度為m;
(2)噴出的水流距柱子1m處達(dá)到最大高度;
(3)噴出的水流距水平面的最大高度是2.5m;
(4)水池的半徑至少要2.5m才能使噴出的水流不至于落在池外.
其中正確的有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,則下列結(jié)論中:①ac>0;②a+b+c<0;③4a﹣2b+c<0;④2a+b<0;⑤4ac﹣b2<4a;⑥a+b>0中,其中正確的個(gè)數(shù)為( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(題文)如圖,在矩形ABCD中,點(diǎn)E是AD上的一個(gè)動(dòng)點(diǎn),連接BE,作點(diǎn)A關(guān)于BE的對(duì)稱點(diǎn)F,且點(diǎn)F落在矩形ABCD的內(nèi)部,連結(jié)AF,BF,EF,過點(diǎn)F作GF⊥AF交AD于點(diǎn)G,設(shè) =n.
(1)求證:AE=GE;
(2)當(dāng)點(diǎn)F落在AC上時(shí),用含n的代數(shù)式表示的值;
(3)若AD=4AB,且以點(diǎn)F,C,G為頂點(diǎn)的三角形是直角三角形,求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、B兩點(diǎn)在反比例函數(shù)y=(x>0)的圖象上,其中k>0,AC⊥y軸于點(diǎn)C,BD⊥x軸于點(diǎn)D,且AC=1
(1)若k=2,則AO的長為 ,△BOD的面積為 ;
(2)若點(diǎn)B的橫坐標(biāo)為k,且k>1,當(dāng)AO=AB時(shí),求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A是反比例y=(x>0)的圖象上的一個(gè)動(dòng)點(diǎn),連接OA,OB⊥OA,且OB=2OA,那么經(jīng)過點(diǎn)B的反比例函數(shù)圖象的表達(dá)式為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC的直角邊BC在x軸負(fù)半軸上,斜邊AC上的中線BD的反向延長線交y軸負(fù)半軸于點(diǎn)E,反比例函數(shù)y=﹣(x<0)的圖象過點(diǎn)A,則△BEC的面積是_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com