【題目】在如圖所示的平面直角坐標系中,每個小方格都是邊長為1的正方形,△ABC的頂點均在格點上,點A的坐標是(–3,–1).

(1)將△ABC先沿x軸向右平移3個單位,再沿y軸向上平移2個單位得到△A1B1C1,畫出△A1B1C1,并寫出點B1坐標.

(2)畫出△A1B1C1關于y軸對稱的△A2B2C2,并寫出點C2的坐標.

(3)求出△A2B2C2的面積.

【答案】(1)作圖見解析,B1(1,﹣2);(2)作圖見解析,C2(﹣2,0);(3)

【解析】

1)直接利用平移的性質得出對應點位置進而得出答案;

2)直接利用軸對稱的性質得出對應點位置進而得出答案;

3)結合△A2B2C2所在矩形面積減去周圍三角形面積進而得出答案

1)如圖所示A1B1C1即為所求,B1的坐標為:(1,﹣2);

2)如圖所示A2B2C2,即為所求,C2的坐標為:(﹣2,0);

3A2B2C2的面積為2×3×2×1×2×1×1×3=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AD是△ABC的中線,tanB= , cosC= , AC= . 求:
(1)BC的長;
(2)sin∠ADC的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)問題背景:已知,如圖1,等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于點D,AB=a,△ABC的面積為S,則有BC=a,S=a2

(2)遷移應用:如圖2,△ABC△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三點在同一條直線上,連接BD.

求證:△ADB≌△AEC;

∠ADB的度數(shù).

AD=2,BD=4,求△ABC的面積.

(3)拓展延伸:如圖3,在等腰△ABC中,∠BAC=120°,在∠BAC內作射線AM,點D與點B關于射線AM軸對稱,連接CD并延長交AM于點E,AF⊥CDF,連接AD,BE.

∠EAF的度數(shù);

CD=5,BD=2,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校開展文明禮儀演講比賽,八(1)班、八(2)班派出的5名選手的比賽成績如圖所示.

(1)根據上圖,完成表格.

平均數(shù)

中位數(shù)

方差

(1)

75

_______

_______

(2)

75

70

160

(2)結合兩班選手成績的平均數(shù)和方差,分析兩個班級參加比賽的選手的成績.

(3)如果在每班參加比賽的選手中分別選出3人參加決賽,從平均分看,你認為哪個班的實力更強一些?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在我市舉行的中學生安全知識競賽中共有20道題.每一題答對得5分,答錯或不答都扣3分.
(1)小李考了60分,那么小李答對了多少道題?
(2)小王獲得二等獎(75~85分),請你算算小王答對了幾道題?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一副三角板按如圖所示疊放在一起,若固定,繞著公共頂點,按順時針方向旋轉,的一邊與的某一邊平行時,相應的旋轉角的度數(shù)為_________________。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=﹣x+2的圖象與反比例函數(shù)y=﹣ 的圖象交于A、B兩點,與x軸交于D點,且C、D兩點關于y軸對稱.
(1)求A、B兩點的坐標;
(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】通過對課本中《硬幣滾動中的數(shù)學》的學習,我們知道滾動圓滾動的周數(shù)取決于滾動圓的圓心運動的路程(如圖①).在圖②中,有2014個半徑為r的圓緊密排列成一條直線,半徑為r的動圓C從圖示位置繞這2014個圓排成的圖形無滑動地滾動一圈回到原位,則動圓C自身轉動的周數(shù)為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,D,E,F分別為AB,BC,CA上的點,且

(1)求證:;

(2),求的度數(shù).

查看答案和解析>>

同步練習冊答案