【題目】有大小兩種貨車,2輛大貨車與3輛小貨車一次可以運(yùn)貨15.5t;5輛大貨車與6輛小貨車一次可以運(yùn)貨35t
(1)每輛大貨車和每輛小貨車一次各可以運(yùn)貨多少?
(2)現(xiàn)在租用這兩種火車共10輛,要求一次運(yùn)輸貨物不低于30t,則大貨車至少租幾輛?

【答案】
(1)解:設(shè)每輛大貨車一次可以運(yùn)貨x噸、每輛小貨車一次可以運(yùn)貨y噸,由題意,得

,

解得:

故每輛大貨車一次可以運(yùn)貨4噸、每輛小貨車一次可以運(yùn)貨2.5噸.


(2)解:設(shè)大貨車租m輛,由題意,得

4m+2.5(10﹣m)≥30,

解得m≥3

∵m為整數(shù),

∴m至少為4.

答:大貨車至少租4輛.


【解析】(1)設(shè)每輛大貨車一次可以運(yùn)貨x噸、每輛小貨車一次可以運(yùn)貨y噸.根據(jù)條件建立方程組求出其解即可;(2)可設(shè)大貨車租m輛,根據(jù)一次運(yùn)輸貨物不低于30t,列出不等式求解即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線x軸正半軸于點A,交y軸負(fù)半軸于點B,點C在線段OA上,將沿直線BC翻折,點Ay軸上的點D(0,4)恰好重合.

(1)求直線AB的表達(dá)式.

(2)已知點E(0,3),點P是直線BC上的一個動點(點P不與點B重合),連接PD,PE,當(dāng)PDE的周長取得最小值時,求點P的坐標(biāo)。

(3)在坐標(biāo)軸上是否存在一點H,使得HABABC的面積相等?若存在,求出滿足條件的點H的坐標(biāo);若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:

如圖1,在數(shù)軸上點M表示的數(shù)是﹣6,點N表示的數(shù)是3,求線段MN的中點K所示的數(shù).

對于求中點表示數(shù)的問題,只要用點N所表示的數(shù)3,加上點M所表示的數(shù)﹣6,得到的結(jié)果再除以2,就可以得到中點K所表示的數(shù);即K點表示的數(shù)為=﹣1.5

利用材料中知識解決下面問題:

如圖2,已知數(shù)軸上有A、B、C、D四點,A點表示數(shù)為﹣6,B點表示的數(shù)是﹣4,線段AD=18,BC=3CD.

(1)D所表示的數(shù)是   

(2)若點B以每秒4個單位的速度向右運(yùn)動,點D以每秒1個單位的速度向左運(yùn)動,同時運(yùn)動t秒后,當(dāng)點C為線段BD的中點時,求t的值;

(3)(2)中點B、點D的運(yùn)動速度運(yùn)動方向不變,點A以每秒10個單位的速度向右運(yùn)動,點C以每秒3個單位的速度向左運(yùn)動,點P是線段AC的中點,點Q是線段BD的中點,A、B、C、D四點同時運(yùn)動,運(yùn)動時間為t,求線段PQ的長(用含t的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某社區(qū)從2011年開始,組織全民健身活動,結(jié)合社區(qū)條件,開展了廣場舞、太極拳、羽毛球和跑步四個活動項目,現(xiàn)將參加項目活動總?cè)藬?shù)進(jìn)行統(tǒng)計,并繪制成每年參加總?cè)藬?shù)折線統(tǒng)計圖和2015年各活動項目參與人數(shù)的扇形統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列題

(1)2015年比2011年增加 人;

(2)請根據(jù)扇形統(tǒng)計圖求出2015年參與跑步項目的人數(shù);

(3)組織者預(yù)計2016年參與人員人數(shù)將比2015年的人數(shù)增加15%,名各活動項目參與人數(shù)的百分比與2016年相同,請根據(jù)以上統(tǒng)計結(jié)果,估計2016年參加太極拳的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請按要求完成下面三道小題.

1)如圖1,AB=AC.這兩條線段一定關(guān)于某條直線對稱嗎?如果是,請畫出對稱軸a(尺規(guī)作圖,保留作圖痕跡);如果不是,請說明理由.

2)如圖2,已知線段AB和點C.求作線段CD(不要求尺規(guī)作圖),使它與AB成軸對稱,且AC是對稱點,明對稱軸b,并簡述畫圖過程.

3)如圖3,任意位置的兩條線段AB,CD,AB=CD.你能通過對其中一條線段作有限次的軸對稱使它們重合嗎?如果能,請描述操作方法;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如果兩條線段將一個三角形分成3個小等腰三角形,我們把這兩條線段叫做這個三角形的三分線,在ABC中,B=30°,AD DEABC的三分線,點D BC 邊上,點E AC邊上,且AD=BD,DE=CE,請寫出C所有可能的度數(shù)________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩組鄰邊分別相等的四邊形我們稱它為箏形.如圖,在四邊形ABCD中,ABAD,BCDC,ACBD相交于點O,下列判斷正確的有_____(填序號)

ACBD;AC,BD互相平分;AC平分BCD;④∠ABCADC90°箏形ABCD的面積為AC·BD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】依法納稅是每個公民應(yīng)盡的義務(wù).新稅法規(guī)定:居民個人的綜合所得,以每一納稅月收入減去費(fèi)用5000元以及專項扣除、專項附加扣除和依法確定的其它扣除后的余額,為個人應(yīng)納稅所得額.已知李先生某月的個人應(yīng)納稅所得額比張先生的多1500元,個人所得稅稅率相同情況下,李先生的個人所得稅稅額為76.5元,而張先生的個人所得稅稅額為31.5元.求李先生和張先生應(yīng)納稅所得額分別為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD的邊長為8,點E為正方形邊上一點,連接BE,且BE=10,則AE的長為

查看答案和解析>>

同步練習(xí)冊答案