【題目】定義:對(duì)于給定的二次函數(shù)y=a(x﹣h)2+k(a0),其伴生一次函數(shù)為y=a(x﹣h)+k,例如:二次函數(shù)y=2(x+1)2﹣3的伴生一次函數(shù)為y=2(x+1)﹣3,即y=2x﹣1.

(1)已知二次函數(shù)y=(x﹣1)2﹣4,則其伴生一次函數(shù)的表達(dá)式為_____;

(2)試說明二次函數(shù)y=(x﹣1)2﹣4的頂點(diǎn)在其伴生一次函數(shù)的圖象上;

(3)如圖,二次函數(shù)y=m(x﹣1)2﹣4m(m0)的伴生一次函數(shù)的圖象與x軸、y軸分別交于點(diǎn)B、A,且兩函數(shù)圖象的交點(diǎn)的橫坐標(biāo)分別為12,在∠AOB內(nèi)部的二次函數(shù)y=m(x﹣1)2﹣4m的圖象上有一動(dòng)點(diǎn)P,過點(diǎn)Px軸的平行線與其伴生一次函數(shù)的圖象交于點(diǎn)Q,設(shè)點(diǎn)P的橫坐標(biāo)為n,直接寫出線段PQ的長(zhǎng)為時(shí)n的值.

【答案】y=x﹣5

【解析】分析(1)根據(jù)定義,直接變形得到伴生一次函數(shù)的解析式;

(2)求出頂點(diǎn),代入伴生函數(shù)解析式即可求解;

(3)根據(jù)題意得到伴生函數(shù)解析式,根據(jù)P點(diǎn)的坐標(biāo),坐標(biāo)表示出縱坐標(biāo),然后通過PQ與x軸的平行關(guān)系,求得Q點(diǎn)的坐標(biāo),由PQ的長(zhǎng)列方程求解即可.

詳解:(1)∵二次函數(shù)y=(x﹣1)2﹣4,

∴其伴生一次函數(shù)的表達(dá)式為y=(x﹣1)﹣4=x﹣5,

故答案為y=x﹣5;

(2)∵二次函數(shù)y=(x﹣1)2﹣4,

∴頂點(diǎn)坐標(biāo)為(1,﹣4),

∵二次函數(shù)y=(x﹣1)2﹣4,

∴其伴生一次函數(shù)的表達(dá)式為y=x﹣5,

∴當(dāng)x=1時(shí),y=1﹣5=﹣4,

∴(1,﹣4)在直線y=x﹣5上,

即:二次函數(shù)y=(x﹣1)2﹣4的頂點(diǎn)在其伴生一次函數(shù)的圖象上;

(3)∵二次函數(shù)y=m(x﹣1)2﹣4m,

∴其伴生一次函數(shù)為y=m(x﹣1)﹣4m=mx﹣5m,

∵P點(diǎn)的橫坐標(biāo)為n,(n>2),

∴P的縱坐標(biāo)為m(n﹣1)2﹣4m,

即:P(n,m(n﹣1)2﹣4m),

∵PQ∥x軸,

∴Q((n﹣1)2+1,m(n﹣1)2﹣4m),

∴PQ=(n﹣1)2+1﹣n,

∵線段PQ的長(zhǎng)為

∴(n﹣1)2+1﹣n=,

∴n=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著中國(guó)經(jīng)濟(jì)的快速發(fā)展以及科技水平的飛速提高,中國(guó)高鐵正迅速崛起.高鐵大大縮短了時(shí)空距離,改變了人們的出行方式.如圖,A,B兩地被大山阻隔,由A地到B地需要繞行C地,若打通穿山隧道,建成A,B兩地的直達(dá)高鐵,可以縮短從A地到B地的路程.已知:∠CAB=30°,∠CBA=45°,AC=640公里,求隧道打通后與打通前相比,從A地到B地的路程將約縮短多少公里?(參考數(shù)據(jù):≈1.7,≈1.4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等邊三角形ABC中,點(diǎn)DBC的中點(diǎn),點(diǎn)E、F分別是邊AB、AC(含線段AB、AC的端點(diǎn))上的動(dòng)點(diǎn),且∠EDF=120°,小明和小慧對(duì)這個(gè)圖形展開如下研究:

問題初探:

1)如圖1,小明發(fā)現(xiàn):當(dāng)∠DEB=90°時(shí),BE+CF=nAB,則n的值為______;

問題再探:

2)如圖2,在點(diǎn)E、F的運(yùn)動(dòng)過程中,小慧發(fā)現(xiàn)兩個(gè)有趣的結(jié)論:

DE始終等于DF;②BECF的和始終不變;請(qǐng)你選擇其中一個(gè)結(jié)論加以證明.

成果運(yùn)用

3)若邊長(zhǎng)AB=4,在點(diǎn)E、F的運(yùn)動(dòng)過程中,記四邊形DEAF的周長(zhǎng)為L,L=DE+EA+AF+FD,則周長(zhǎng)L的變化范圍是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將進(jìn)貨單價(jià)40元的商品按50元出售,能賣出500個(gè),已知這種商品每漲價(jià)1元,就會(huì)少銷售10個(gè)。為了賺得8000元的利潤(rùn),售價(jià)應(yīng)定為多少?這時(shí)應(yīng)進(jìn)貨多少個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在自動(dòng)向西的公路l上有一檢查站A,在觀測(cè)點(diǎn)B的南偏西53°方向,檢查站一工作人員家住在與觀測(cè)點(diǎn)B的距離為7km,位于點(diǎn)B南偏西76°方向的點(diǎn)C處,求工作人員家到檢查站的距離AC.(參考數(shù)據(jù):sin76°,cos76°,tan 76°4,sin53°,tan53°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,是角平分線,

1)如圖1,是高,,,則 (直接寫出結(jié)論,不需寫解題過程);

2)如圖2,點(diǎn)上,,試探究、之間的數(shù)量關(guān)系,寫出你的探究結(jié)論并證明;

3)如圖3,點(diǎn)的延長(zhǎng)線上,,則、之間的數(shù)量關(guān)系是  (直接寫出結(jié)論,不需證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在連接A、B兩市的公路之間有一個(gè)機(jī)場(chǎng)C,機(jī)場(chǎng)大巴由A市駛向機(jī)場(chǎng)C,貨車由B市駛向A市,兩車同時(shí)出發(fā)勻速行駛,圖中線段、折線分別表示機(jī)場(chǎng)大巴、貨車到機(jī)場(chǎng)C的路程y(km)與出發(fā)時(shí)間x(h)之間的函數(shù)關(guān)系圖象.

(1)直接寫出連接A、B兩市公路的路程以及貨車由B市到達(dá)A市所需時(shí)間.

(2)求機(jī)場(chǎng)大巴到機(jī)場(chǎng)C的路程y(km)與出發(fā)時(shí)間x(h)之間的函數(shù)關(guān)系式.

(3)求機(jī)場(chǎng)大巴與貨車相遇地到機(jī)場(chǎng)C的路程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ABC90°,AC15cmBC12cm,點(diǎn)D是線段AC的中點(diǎn),動(dòng)點(diǎn)PADBC向終點(diǎn)C出發(fā),速度為5cm/s,當(dāng)點(diǎn)P不與點(diǎn)AB重合時(shí),作PEAB交線段AB于點(diǎn)E,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為ts),APE的面積為Scm2).

1)寫出線段AB的長(zhǎng);

2)當(dāng)點(diǎn)P在線段BD上時(shí),求PE的長(zhǎng)(用含t的式子表示);

3)當(dāng)點(diǎn)P沿ADB運(yùn)動(dòng)時(shí),用含t的代數(shù)式表示S;

4)點(diǎn)E關(guān)于直線AP的對(duì)稱點(diǎn)為E′,當(dāng)點(diǎn)E′落在ABC的內(nèi)部時(shí),直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是某同學(xué)對(duì)多項(xiàng)式進(jìn)行因式分解的過程.

解:設(shè),

原式(第一步)

(第二步)

(第三步)

(第四步)

回答下列問題:

1)該同學(xué)第二步到第三步運(yùn)用了因式分解的_____________

A.提取公因式 B.平方差公式

C.兩數(shù)和的完全平方公式 D.兩數(shù)差的完全平方公式

2)該同學(xué)因式分解的結(jié)果是否徹底__________(填“徹底”或“不徹底”)

若不徹底,請(qǐng)直接寫出因式分解的最后結(jié)果_____________

查看答案和解析>>

同步練習(xí)冊(cè)答案