【題目】◆探索發(fā)現(xiàn):如圖是一種網(wǎng)紅彈弓的實物圖,在兩頭上系上皮筋,拉動皮筋可形成平面示意圖如圖1、圖2,彈弓的兩邊可看成是平行的,即.各活動小組探索之間的數(shù)量關(guān)系.已知,點不在直線和直線上.在圖1中,智慧小組發(fā)現(xiàn):

智慧小組是這樣思考的:過點,……

請你按照智慧小組作的輔助線補全推理過程.

◆類比思考:①在圖2中,,之間的數(shù)量關(guān)系為________

②如圖3,已知,則角之間的數(shù)量關(guān)系為________

◆解決問題:善思小組提出:如圖4,圖5,分別平分,

①在圖4中,之間的關(guān)系為________

②在圖5中,之間的關(guān)系為________

【答案】探索發(fā)現(xiàn):見解析;類比思考:①;②;解決問題:①;②

【解析】

探索:發(fā)現(xiàn)由平行線的性質(zhì)得出∠APQ=A,由PQABABCD,推出PQCD,得出∠APQ=C,推出∠APQ+CPQ=A+C,即可得出結(jié)論;
類比思考①過點PPQAB,延長BAM,延長DCN,由平行線的性質(zhì)得出∠APQ=PAM,由PQABABCD,推出PQCD,得出∠APQ=PCN,則∠APQ+CPQ+PAB+PCD=360°,即可得出結(jié)果;
②過點MMQAB,由平行線的性質(zhì)得出α+QMA=180°,由MQAB,ABCD,推出MQCD,得出∠QMD=γ,即可得出結(jié)果;
解決問題①過點PPQAB,過點FFMAB,由平行線的性質(zhì)得出∠APQ=BAP,∠AFM=BAF,由角平分線的性質(zhì)得出∠BAF=PAF,即∠AFM=BAP,由PQAB,FMAB,ABCD,推出PQCD,FMCD,得出∠CPQ=DCP,∠CFM=DCF,由角平分線的性質(zhì)得出∠DCF=PCF,即∠CFM=DCP,推出∠APC=BAP+DCP,∠AFC=(∠BAP+DCP),即可得出結(jié)果;
②過點PPHAB,過點FFQAB,延長BAM,延長DCN,由平行線的性質(zhì)得出∠APH=MAP,∠AFQ=BAF,由角平分線的性質(zhì)得出∠BAF=PAF,即2AFQ=BAP,由PHAB,FQABABCD,推出PHCD,FQCD,得出∠CPH=NCP,∠CFQ=DCF,由角平分線的性質(zhì)得出∠DCF=PCF,即2CFQ=DCP,由∠BAP+MAP=180°,∠DCP+NCP=180°,得出2AFQ+APH=180°2CFQ+CPH=180°,即可得出結(jié)果.

探索發(fā)現(xiàn):

、

類比思考:①∠APC+A+C=360°;理由如下:
過點PPQAB,延長BAM,延長DCN,如圖2所示:


∴∠APQ=PAM
PQAB,ABCD,
PQCD,
∴∠APQ=PCN,
∴∠APQ+CPQ+PAB+PCD=180°+180°=360°,
∴∠APC+A+C=360°
故答案為:∠APC+A+C=360°;


α+β-γ=180°;理由如下:
過點MMQAB,如圖3所示:
α+QMA=180°
MQAB,ABCD
MQCD
∴∠QMD=γ,
∵∠QMA+QMD=β,
α+β-γ=180°,
故答案為:α+β-γ=180°;


解決問題:①∠AFC=APC;理由如下:
過點PPQAB,過點FFMAB,如圖4所示:
∴∠APQ=BAP,∠AFM=BAF,
AF平分∠BAP,
∴∠BAF=PAF
∴∠AFM=BAP,
PQABFMAB,ABCD,
PQCD,FMCD,
∴∠CPQ=DCP,∠CFM=DCF,
CF平分∠DCP,
∴∠DCF=PCF,
∴∠CFM=DCP
∴∠APC=BAP+DCP,∠AFC=BAP+DCP=(∠BAP+DCP),
∴∠AFC=APC
故答案為:∠AFC=APC;


②∠AFC=180°-APC;理由如下:
過點PPHAB,過點FFQAB,延長BAM,延長DCN,如圖5所示:
∴∠APH=MAP,∠AFQ=BAF,
AF平分∠BAP,
∴∠BAF=PAF,
2AFQ=BAP
PHAB,FQAB,ABCD,
PHCD,FQCD
∴∠CPH=NCP,∠CFQ=DCF,
CF平分∠DCP,
∴∠DCF=PCF,
2CFQ=DCP
∵∠BAP+MAP=180°,∠DCP+NCP=180°
2AFQ+APH=180°,2CFQ+CPH=180°,
2AFQ+APH+2CFQ+CPH=360°,
2AFC+APC=360°,
∴∠AFC=180°-APC
故答案為:∠AFC=180°-APC

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在平面直角坐標(biāo)系中,點的坐標(biāo)分別是

1)求的值;

2)在軸上是否存在點,使三角形的面積是?若存在,求出點的坐標(biāo);若不存在,請說明理由;

3)已知點軸正半軸上一點,且到軸的距離為,若點沿軸負半軸方向以每秒個單位長度平移至點,當(dāng)運動時間為多少秒時,四邊形的面積個平方單位?并寫出此時點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中學(xué)生帶手機上學(xué)的現(xiàn)象越來越受到社會的關(guān)注,為此,某記者隨機調(diào)查了某城區(qū)若干名學(xué)生家長對這種現(xiàn)象的態(tài)度(態(tài)度分為:A:無所謂;B:基本贊成;C:贊成;D:反對),并將調(diào)查結(jié)果繪制成頻數(shù)折線圖1和統(tǒng)計圖2(不完整)。請根據(jù)圖中提供的信息,解答下列問題:

1)此次抽樣檢查中,共調(diào)查了  名學(xué)生家長;

2)將圖1補充完整;

3)根據(jù)抽樣檢查的結(jié)果,請你估計該市城區(qū)6000名中學(xué)生家長中有多少名家長持反對態(tài)度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠A=90°,C=30°,ADBCD,BE是∠ABC的平分線,且交ADP,如果AP=2,則AC的長為( )

A. 2 B. 4 C. 6 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下面的證明:

如圖,已知,,可推得

理由如下:∵(已知),

(等量代換)

________________

∴∠________

又∵(已知)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(探究)如圖①,從邊長為a的大正方形中剪掉一個邊長為b的小正方形,有陰影部分沿虛線剪開,拼成圖②的長方形

1)請你分別表示出這兩個圖形中陰影部分的面積

2)比較兩圖的陰影部分面積,可以得到乘法公式 (用字母表示)

(應(yīng)用)請應(yīng)用這個公式完成下列各題

①已知,,則的值為

②計算:

(拓展)①結(jié)果的個位數(shù)字為

②計算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校開展了讓世界充滿愛的捐款助學(xué)活動,其中八(2)班全體同學(xué)的捐款情況如下表:

捐款金額()

5

10

15

20

50

捐款人數(shù)()

7

18

12

3

由于填表的同學(xué)不小心把墨水滴在了表上,致使表中數(shù)據(jù)不完整,但知道捐款金額為10元的人數(shù)為全班人數(shù)的36%,結(jié)合上表回答下列問題:

(1)(2)班共有多少人?

(2)學(xué)生捐款金額的眾數(shù)和中位數(shù)分別為多少元?

(3)如果把該班學(xué)生的捐款情況繪制成扇形統(tǒng)計圖,則捐款金額為20元的人數(shù)所對應(yīng)的扇形圓心角為多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)規(guī)定:求若千個相同的有理數(shù)(均不等于)的商的運算叫做除方,比如等,類比有理數(shù)的乘方,我們把記作,讀作“的圈次方”,記作,讀作“的圈次方”,一般地,把相除記作,讀作“的圈次方”.

初步探究:(1)直接寫出結(jié)果:

2)下列關(guān)于除方的說法中,錯誤的是

A.任何非零數(shù)的圈次方都等于

B.對于任何正整數(shù)的圈次方等于

C

D.負數(shù)的圈奇數(shù)次方的結(jié)果是負數(shù),負數(shù)的圈偶數(shù)次方的結(jié)果是正數(shù)

深入思考:我們知道,有理數(shù)的減法運算可以轉(zhuǎn)化為加法運算,除法運算可以轉(zhuǎn)化為乘法運算,有理數(shù)的除方運算如何轉(zhuǎn)化為乘方運算呢?

3)試一試,把下列除方運算直接寫成冪的形式

4)想一想,請把有理數(shù)的圈次方寫成冪的形式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】重百、沃爾瑪兩家超市出售同樣的保溫壺和水杯,保溫壺和水杯在兩家超市的售價分別一樣.已知買1個保溫壺和1個水杯要花費60元,買2個保溫壺和3個水杯要花費130元.

1)請問:一個保溫壺與一個水杯售價各是多少元;(列方程組求解)

2)為了迎接五一勞動節(jié),兩家超市都在搞促銷活動,重百超市規(guī)定:這兩種商品都打九折;沃爾瑪超市規(guī)定:買一個保溫壺贈送一個水杯.若某單位想要買4個保溫壺和15個水杯,如果只能在一家超市購買,請問選擇哪家超市購買更合算,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案