【題目】如圖,在中,,,點(diǎn)上的動(dòng)點(diǎn)(不與,重合),過點(diǎn)

于點(diǎn).以為直徑作,并在內(nèi)作內(nèi)接矩形,令

用含的代數(shù)式表示的面積;

當(dāng)為何值時(shí),與直線相切?

【答案】當(dāng)時(shí),相切.

【解析】(1)由△AMN∽△ABC得出AN,又S△AMN=S△MNP,求得△AMN的面積即可.

(2)設(shè)直線BC與⊙O相切于點(diǎn)D,連接AO,OD,并過點(diǎn)M作MQ⊥BC于Q,由(1)中△AMN∽△ABC得,則求得MN、OD,再證△BMQ∽△BCA,得,代入求得x的值.

,

,即

(2)如圖,設(shè)直線BC與⊙O相切于點(diǎn)D,連接AO,OD.

中,

,即

過點(diǎn),則

中,是公共角,

,即

解得

解得,即當(dāng)時(shí),相切.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB=AC,∠A=36°,AC的垂直平分線MNABD,ACM,以下結(jié)論:

①△BCD是等腰三角形;②射線CD是∠ACB的角平分線;③△BCD的周長(zhǎng)CBCD=AB+BC;④△ADM≌△BCD。

正確的有( )

A. ①② B. ①③ C. ①②③ D. ③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在△ABC中,∠BAC=60°,點(diǎn)0是△ABC內(nèi)一點(diǎn),△AB0△ACD,連接OD.

(1)求證△AOD為等邊三角形。

(2)如圖2,連接OC,若∠BOC=130°,∠AOB=.

①求∠OCD的度數(shù)

②當(dāng)△OCD是等腰三角形時(shí),求∠的度數(shù)

、

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2-6ax+6(a≠0)x軸交于點(diǎn)A(8,0),與y軸交于點(diǎn)B,在X軸上有一動(dòng)點(diǎn)E(m,0)(0m8),過點(diǎn)Ex軸的垂線交直線AB于點(diǎn)N,交拋物線于點(diǎn)P,過點(diǎn)PPMAB于點(diǎn)M

)分別求出直線AB和拋物線的函數(shù)表達(dá)式;

)設(shè)PMN的面積為S1,AEN的面積為S2,若S1S2=3625,求m的值;

)如圖2,在()條件下,將線段OE繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)得到OE',旋轉(zhuǎn)角為α(0°α90°),連接EAEB

①在x軸上找一點(diǎn)Q,使OQE∽△OEA,并求出Q點(diǎn)的坐標(biāo);

②求BE+AE'的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說法中:

兩條直線相交只有一個(gè)交點(diǎn);

兩條直線不是一定有公共點(diǎn);

直線與直線是兩條不同的直線;

兩條不同的直線不能有兩個(gè)或更多公共交點(diǎn).

其中正確的是(

A. (1)(2) B. (1)(4) C. (1)(2)(4) D. (2)(3)(4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)O是坐標(biāo)原點(diǎn),四邊形ABCO是菱形,點(diǎn)A的坐標(biāo)為(﹣3,4),點(diǎn)Cx軸的正半軸上,直線ACy軸于點(diǎn)M,AB邊交y軸于點(diǎn)H,連接BM.

(1)菱形ABCO的邊長(zhǎng)   

(2)求直線AC的解析式;

(3)動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿折線ABC方向以2個(gè)單位/秒的速度向終點(diǎn)C勻速運(yùn)動(dòng),設(shè)PMB的面積為S(S≠0),點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,

①當(dāng)0<t<時(shí),求St之間的函數(shù)關(guān)系式;

②在點(diǎn)P運(yùn)動(dòng)過程中,當(dāng)S=3,請(qǐng)直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某塔觀光層的最外沿點(diǎn)E為蹦極項(xiàng)目的起跳點(diǎn).已知點(diǎn)E離塔的中軸線AB的距離OE為10米,塔高AB為123米(AB垂直地面BC),在地面C處測(cè)得點(diǎn)E的仰角α=45°,從點(diǎn)C沿CB方向前行40米到達(dá)D點(diǎn),在D處測(cè)得塔尖A的仰角β=60°,求點(diǎn)E離地面的高度EF.(結(jié)果精確到0.1米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC中,ABACBC6.點(diǎn)P射線BA上一點(diǎn),點(diǎn)Q是AC的延長(zhǎng)線上一點(diǎn),且BPCQ,連接PQ,與直線BC相交于點(diǎn)D.

(1)如圖①,當(dāng)點(diǎn)P為AB的中點(diǎn)時(shí),求CD的長(zhǎng);

(2)如圖②,過點(diǎn)P作直線BC的垂線,垂足為E,當(dāng)點(diǎn)P,Q分別在射線BA和AC的延長(zhǎng)線上任意地移動(dòng)過程中,線段BE,DE,CD中是否存在長(zhǎng)度保持不變的線段?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 如圖,在直角坐標(biāo)系中,已知點(diǎn)A-30),B0,4),AB=5,對(duì)OAB連續(xù)做旋轉(zhuǎn)變換,依次得到12,34,,則2017的直角頂點(diǎn)的坐標(biāo)為______

查看答案和解析>>

同步練習(xí)冊(cè)答案