【題目】如圖,拋物線C1:的頂點(diǎn)為A,與x軸的正半軸交于點(diǎn)B.
(1)請直接寫出A、B兩點(diǎn)的坐標(biāo),A ,B .
(2)將拋物線C1上的點(diǎn)的橫坐標(biāo)和縱坐標(biāo)都擴(kuò)大到原來的2倍,求變換后得到的拋物線的解析式;
(3)將拋物線C1上的點(diǎn)(x,y)變?yōu)椋╧x,ky)(|k|>1),變換后得到的拋物線記作C2.拋物線C2的頂點(diǎn)為C,點(diǎn)P在拋物線C2上,滿足S△PAC=S△ABC,且∠ACP=90°.
①當(dāng)k>1時(shí),求k的值;
②當(dāng)k<-1時(shí),請你直接寫出k的值,不必說明理由.
【答案】(1)A(1,);B(2,0);(2) y=-x2+2x;(3)①;② -.
【解析】
(1)把函數(shù)解析式化為頂點(diǎn)式即可得到A(1,),解方程即可得到B(2,0);
(2)由拋物線C1解析式求出A、B及原點(diǎn)坐標(biāo),將三點(diǎn)坐標(biāo)都擴(kuò)大到原來的2倍,待定系數(shù)求解可得;
(3)①如圖1中,當(dāng)k>1時(shí),與(1)同理可得拋物線C2的解析式為y=-x2+2x及頂點(diǎn)C的坐標(biāo),根據(jù)S△PAC=S△ABC知BP∥AC,繼而可得△ABO是邊長為2的正三角形,四邊形CEBP是矩形,表示出點(diǎn)P的坐標(biāo),將其代入到拋物線C2解析式可求得k的值;
②如圖2中,當(dāng)k<-1時(shí),作△ABO關(guān)于y軸對稱的△A′B′O,OE′⊥A′B′,同理可得四邊形CEBP是矩形,先求出拋物線C2解析式,表示出點(diǎn)P的坐標(biāo),將其代入到拋物線C2解析式可求得k的值;
(1)A(1,);B(2,0);
(2)∵y=-x2+2x=-(x-1)2+,
∴拋物線C1經(jīng)過原點(diǎn)O,點(diǎn)A(1,)和點(diǎn)B(2,0)三點(diǎn),
∴變換后的拋物線經(jīng)過原點(diǎn)O,(2,2)和(4,0)三點(diǎn),
∴變換后拋物線的解析式為y=-x2+2x;
(3)①如圖1中,當(dāng)k>1時(shí),
∵拋物線C2經(jīng)過原點(diǎn)O,(k,k),(2k,0)三點(diǎn),
∴拋物線C2的解析式為y=-x2+2x,
∴O、A、C三點(diǎn)共線,且頂點(diǎn)C為(k,k),
如圖,∵S△PAC=S△ABC,∴BP∥AC,
過點(diǎn)P作PD⊥x軸于D,過點(diǎn)B作BE⊥AO于E,
由題意知△ABO是邊長為2的正三角形,四邊形CEBP是矩形,
∴OE=1,CE=BP=2k-1,
∵∠PBD=60°,∴BD=k-,PD=(2k-1),
∴P(k+,(2k-1)),
∴(2k-1)=-(k+)2+2(k+),
解得:k=;
②如圖2中,當(dāng)k<-1時(shí),
∵拋物線C2經(jīng)過原點(diǎn)O,(k,k),(2k,0)三點(diǎn),
∴拋物線C2的解析式為y=-x2+2x,
∴O、A、C′三點(diǎn)共線,且頂點(diǎn)C′為(k,k),
作△ABO關(guān)于y軸對稱的△A′B′O,OE′⊥A′B′,
∵S△PAC′=S△ABC=S△AC′B′,
∴A′P∥AC′,由題意四邊形PC′OE′是矩形,
∴PE′=OC′=-2k,B′E′=1,PB′=-2k-1,
在Rt△PDB′中,∵∠PDB′=90°,∠PB′D=∠A′B′O=60°,
∴DB′=PB′=,DP=(-2k-1),∴點(diǎn)P坐標(biāo)[,(2k+1)],
∴(2k+1)=-()2+2()
∴k=-.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點(diǎn)P是BC中點(diǎn),兩邊PE、PF分別交AB、AC于點(diǎn)E、F,給出的以下四個(gè)結(jié)論:①AE=CF; ②△EPF一定是等腰直角三角形; ③S四邊形AEPF=S△ABC;④當(dāng)∠EPF在△ABC內(nèi)繞頂點(diǎn)P旋轉(zhuǎn)時(shí)始終有EF=AP。(點(diǎn)E不與A、B重合),上述結(jié)論中始終正確的有_____.(寫序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】黃岡市人杰地靈、山青水秀,擁有豐富的旅游資源,楚龍旅行社為吸引市民組團(tuán)去大別山某風(fēng)景區(qū)旅游,推出了如下收費(fèi)標(biāo)準(zhǔn):
一單位組織員工去該風(fēng)景區(qū)旅游,共支付給楚龍旅行社旅游費(fèi)用元,請問該單位這次共有多少員工去旅游?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在 △ABC和 △ADE中,∠BAD=∠CAE, ∠ABC=∠ADE.
(1)寫出圖中兩對相似三角形(不得添加字母和線);
(2)請證明你寫出的兩對相似三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=10,OC=8.在OC邊上取一點(diǎn)D,將紙片沿AD翻折,使點(diǎn)O落在BC邊上的點(diǎn)E處,求D,E兩點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩地相距300千米,一輛貨車和一輛轎車分別從甲地開往乙地轎車的平均速度大于貨車的平均速度,如圖,線段OA、折線BCD分別表示兩車離甲地的距離單位:千米與時(shí)間單位:小時(shí)之間的函數(shù)關(guān)系.
線段OA與折線BCD中,______表示貨車離甲地的距離y與時(shí)間x之間的函數(shù)關(guān)系.
求線段CD的函數(shù)關(guān)系式;
貨車出發(fā)多長時(shí)間兩車相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】雙曲線上一點(diǎn),過作軸,軸的垂線,垂足分別為、,矩形的面積為,則雙曲線與直線在交點(diǎn)在第一象限內(nèi)的點(diǎn)的坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,Rt△ABC中,∠C=90°,AC=8,BC=6,AD平分∠BAC,交BC于點(diǎn)D,DE⊥AB于點(diǎn)E.
(1)求BE的長;
(2)求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一條東西走向的筆直公路,點(diǎn)A、B表示公路北側(cè)間隔150米的兩棵樹所在的位置,點(diǎn)C表示電視塔所在的位置.小王在公路PQ南側(cè)直線行走,當(dāng)他到達(dá)點(diǎn)P的位置時(shí),觀察樹A恰好擋住電視塔,即點(diǎn)P、A、C在一條直線上,當(dāng)他繼續(xù)走180米到達(dá)點(diǎn)Q的位置時(shí),以同樣方法觀察電視塔,觀察樹B也恰好擋住電視塔.假設(shè)公路兩側(cè)AB∥PQ,且公路的寬為60米,求電視塔C到公路南側(cè)PQ的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com