【題目】如圖,△ABC中,AB=AC,∠A為銳角,CD為AB邊上的高,點(diǎn)O為△ACD的內(nèi)切圓圓心,則∠AOB=____.
【答案】135°.
【解析】
連接CO,并延長(zhǎng)AO到BC上一點(diǎn)F,由CD是AB邊上的高,則∠ADC=90°,那么∠BAC+∠ACD=90°;O是△ACD的內(nèi)心,則AO、CO分別是∠DAC和∠DCA的角平分線,即∠OAC+∠OCA=45°,由此可求得∠AOC的度數(shù);再根據(jù)∠AOB和∠AOC的關(guān)系,得出∠AOB的角度.
如圖,連接CO,并延長(zhǎng)AO到BC上一點(diǎn)F.
∵CD為AB邊上的高,
∴∠ADC=90°,
∴∠BAC+∠ACD=90°;
又∵O為△ACD的內(nèi)切圓圓心,
∴AO、CO分別是∠BAC和∠ACD的角平分線,
∴∠OAC+∠OCA(∠BAC+∠ACD)90°=45°,
∴∠AOC=135°;
在△AOB和△AOC中,
,
∴△AOB≌△AOC(SAS),
∴∠AOB=∠AOC=135°.
故答案為:135°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,直徑DE⊥AB于點(diǎn)F,交BC于點(diǎn) M,DE的延長(zhǎng)線與AC的延長(zhǎng)線交于點(diǎn)N,連接AM.
(1)求證:AM=BM;
(2)若AM⊥BM,DE=8,∠N=15°,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,,.P是底邊上的一個(gè)動(dòng)點(diǎn)(P與B、C不重合),以P為圓心,為半徑的與射線交于點(diǎn)D,射線交射線于點(diǎn)E.
(1)若點(diǎn)E在線段的延長(zhǎng)線上,設(shè),求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍.
(2)連接,若,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(I)圓中最長(zhǎng)的弦是________;
(Ⅱ)如圖①,AB 是⊙O 的弦,AB=8,點(diǎn) C 是⊙O 上的一個(gè)動(dòng)點(diǎn),且∠ACB=45°, 若點(diǎn) M、N 分別是 AB、AC 的中點(diǎn),則 MN 長(zhǎng)度的最大值是___;
(Ⅲ)如圖②,△ABC 中,∠BAC=60°,∠ABC=45°,AB=4,D 是邊 BC 上的一個(gè)動(dòng)點(diǎn),以 AD 為直徑畫⊙O,分別交 AB、AC 于點(diǎn) E、F,連接 EF,則線段 EF 長(zhǎng)度的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D.
(1)在圖(1)中,用直尺和圓規(guī)過(guò)點(diǎn)D作⊙O的切線DE交BC于點(diǎn)E;(保留作圖痕跡,不寫作法)
(2)如圖(2),如果⊙O的半徑為3,ED=4,延長(zhǎng)EO交⊙O于F,連接DF,與OA交于點(diǎn)G,求OG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,燈在距地面6米的A處,與燈柱AB相距3米的地方有一長(zhǎng)3米的木棒CD直立于地面.
(1)在圖中畫出木棒CD的影子,并求出它的長(zhǎng)度;
(2)當(dāng)木棒繞其與地面的固定端點(diǎn)D按順時(shí)針?lè)较蛐D(zhuǎn)到地面時(shí),其影子的變化有什么規(guī)律?你能求出其影長(zhǎng)的取值范圍嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=﹣x+1與反比例函數(shù)y=的圖象相交于點(diǎn)A、B,過(guò)點(diǎn)A作AC⊥x軸,垂足為點(diǎn)C(﹣2,0),連接AC、BC.
(1)求反比例函數(shù)的解析式;
(2)求S△ABC;
(3)利用函數(shù)圖象直接寫出關(guān)于x的不等式﹣x+1<的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】從﹣2,﹣,0,4中任取一個(gè)數(shù)記為m,再?gòu)挠嘞碌娜齻(gè)數(shù)中,任取一個(gè)數(shù)記為n,若k=mn.
(1)請(qǐng)用列表或畫樹(shù)狀圖的方法表示取出數(shù)字的所有結(jié)果;
(2)求正比例函數(shù)y=kx的圖象經(jīng)過(guò)第一、三象限的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知點(diǎn)A,對(duì)點(diǎn)A作如下變換:
第一步:作點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)A1;第二步:以O為位似中心,作線段OA1的位似圖形OA2,且相似比=q,則稱A2是點(diǎn)A的對(duì)稱位似點(diǎn).
(1)若A(2,3),q=2,直接寫出點(diǎn)A的對(duì)稱位似點(diǎn)的坐標(biāo);
(2)已知直線l:y=kx-2,拋物線C:y=-x2+mx-2(m>0).點(diǎn)N(,2k-2)在直線l上.
①當(dāng)k=時(shí),判斷E(1,-1)是否是點(diǎn)N的對(duì)稱位似點(diǎn),請(qǐng)說(shuō)明理由;
②若直線l與拋物線C交于點(diǎn)M(x1,y1)(x1≠0),且點(diǎn)M不是拋物線的頂點(diǎn),則點(diǎn)M的對(duì)稱位似點(diǎn)是否可能仍在拋物線C上?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com