已知:如圖,△ABC與△BDE都是正三角形,且點D在邊AC上,并與端點A、C不重合.求證:(1)△ABE≌△CBD;(2)四邊形AEBC是梯形.

證明:(1)在正△ABC與正△BDE中
∵AB=BC,BE=BD,∠ABC=∠EBD=60°,
∴∠ABE=∠CBD.
∴△ABE≌△CBD.

(2)∵△ABE≌△CBD,
∴∠BAE=∠C=60°,AE=CD.
∴∠BAE=∠ABC.
∴AE∥BC.
又∵BC=AC>CD,
∴BC>AE.
∴四邊形AEBC是梯形.
分析:根據(jù)等邊三角形的性質(zhì)利用SAS判定△ABE≌△CBD;由三角形全等可得∠BAE=∠C=60°,AE=CD,從而得到∠BAE=∠ABC,內(nèi)錯角相等兩直線平行即AE∥BC,因為BC=AC>CD,即BC>AE所以四邊形AEBC是梯形.
點評:此題主要考查學(xué)生對等邊三角形的性質(zhì),全等三角形的判定及梯形的判定的綜合運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

17、已知,如圖,△ABC中,∠BAC=90°,AD⊥BC于點D,BE平分∠ABC,交AD于點M,AN平分∠DAC,交BC于點N.
求證:四邊形AMNE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,∠ABC、∠ACB 的平分線相交于點F,過F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,△ABC是等邊三角形,點D在AB上,點E在AC的延長線上,且BD=CE,DE交BC于F,求證:BF=CF+CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,△ABC中,AB=AC=10,BC=16,點D在BC上,DA⊥CA于A.
求:BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,△ABC中,AD⊥BC,BD=DE,點E在AC的垂直平分線上.
(1)請問:AB、BD、DC有何數(shù)量關(guān)系?并說明理由.
(2)如果∠B=60°,請問BD和DC有何數(shù)量關(guān)系?并說明理由.

查看答案和解析>>

同步練習(xí)冊答案