【題目】在等腰梯形ABCD中,AD∥BC,AD=3,AB=CD=4,BC=5,∠B的平分線交DC于點(diǎn)E,交AD的延長(zhǎng)線于點(diǎn)F.
(1)如圖(1),若∠C的平分線交BE于點(diǎn)G,寫出圖中所有的相似三角形(不必證明);
(2)在(1)的條件下求BG的長(zhǎng);
(3)若點(diǎn)P為BE上動(dòng)點(diǎn),以點(diǎn)P為圓心,BP為半徑的⊙P與線段BC交于點(diǎn)Q(如圖(2)),請(qǐng)直接寫出當(dāng)BP取什么范圍內(nèi)值時(shí),①點(diǎn)A在⊙P內(nèi);②點(diǎn)A在⊙P內(nèi)而點(diǎn)E在⊙P外.
【答案】(1)見(jiàn)解析;(2)BG= ;(3)①當(dāng)<BP≤時(shí),點(diǎn)A在⊙P內(nèi);②當(dāng)<BP<時(shí),點(diǎn)A在⊙P內(nèi)而點(diǎn)E在⊙P外.
【解析】
(1)利用平行線的性質(zhì)和角平分線定義找到相等的角,進(jìn)一步根據(jù)兩角對(duì)應(yīng)相等證明三角形相似;
(2)根據(jù)平行線的性質(zhì)和角平分線定義,得∠ABE=∠AFB,則AB=AF=4,則DF=1;根據(jù)平行線分線段成比例定理求得DE和CE的長(zhǎng);根據(jù)等腰梯形的性質(zhì)和角平分線定義,得BG=CG;設(shè)BG=CG=x,根據(jù)△FDE∽△CGE,求得BG的長(zhǎng);
(3)根據(jù)點(diǎn)和圓的位置關(guān)系與數(shù)量之間的聯(lián)系進(jìn)行分析.
解:(1)△ABF∽△GBC,△FDE∽△CGE∽△BCE.理由如下:
∵AD∥BC,AB=CD,
∴∠AFB=∠EBC,∠ABC=∠DCB,
∵BF平分∠ABC, CG平分∠BCD,
∴∠ABF=∠BCG=∠ABC=∠DCB,
∴△ABF∽△GBC;
∵DF∥BC,
∴△FDE∽△BCE;
∵∠AFB=∠DCG=∠ABC=∠DCB,∠DEF=∠CEG,
∴△FDE∽△CGE.
∴△FDE∽△CGE∽△BCE.
(2)∵BE平分∠B,
∴∠ABE=∠EBC,
∵AD∥BC,
∴∠AFB=∠EBC,
∴∠ABE=∠AFB,
∴AB=AF.
∴AF=4,DF=1.
∵AD∥BC,
∴DF:BC=DE:EC,
∴DE=,CE=.
∵AD∥BC,AB=CD,
∴∠BCD=∠ABC.
∵CG平分∠BCD,BE平分∠ABC,
∴∠CBG=∠BCG,
∴BG=CG.
設(shè)BG=CG=x,則由△FDE∽△CGE,得
DF:CG=DE:GE,
∴GE=x.
又由△CGE∽△BCE,得
EC2=EGEB,
即=x(x+x),
∴x=,
即BG=.
(3)①連接AP,當(dāng)BP=AP時(shí),點(diǎn)A在圓P上,此時(shí)△ABP∽△ABF,求得BP=,
即BP>AP時(shí),點(diǎn)A在⊙P內(nèi).
∴當(dāng)<BP≤時(shí),點(diǎn)A在⊙P內(nèi).
②根據(jù)①求得BE=,
∴BP<BE,即BP<時(shí),點(diǎn)A在⊙P內(nèi)而點(diǎn)E在⊙P外
∴當(dāng)<BP<時(shí),點(diǎn)A在⊙P內(nèi)而點(diǎn)E在⊙P外.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校數(shù)學(xué)興趣小組的同學(xué)測(cè)量一架無(wú)人飛機(jī)P的高度,如圖,A,B兩個(gè)觀測(cè)點(diǎn)相距,在A處測(cè)得P在北偏東71°方向上,同時(shí)在B處測(cè)得P在北偏東35°方向上.求無(wú)人飛機(jī)P離地面的高度.(結(jié)果精確到1米,參考數(shù)據(jù):,,sin71°≈0.95,tan71°≈2.90)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義[a,b,c]為函數(shù)y=ax2+bx+c的特征數(shù),下面給出特征數(shù)為[2m,1﹣m,﹣1﹣m]的函數(shù)的一些結(jié)論,其中不正確的是( 。
A. 當(dāng)m=﹣3時(shí),函數(shù)圖象的頂點(diǎn)坐標(biāo)是(,)
B. 當(dāng)m>0時(shí),函數(shù)圖象截x軸所得的線段長(zhǎng)度大于
C. 當(dāng)m≠0時(shí),函數(shù)圖象經(jīng)過(guò)同一個(gè)點(diǎn)
D. 當(dāng)m<0時(shí),函數(shù)在x>時(shí),y隨x的增大而減小
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=x2+bx的圖象過(guò)點(diǎn)A(4,0),設(shè)點(diǎn)C(1,-3),在拋物線的對(duì)稱軸上求一點(diǎn)P,使|PA-PC|的值最大,則點(diǎn)P的坐標(biāo)為____________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的方程ax2+(a+2)x+9a=0有兩個(gè)不等的實(shí)數(shù)根x1,x2,且x1<1<x2,那么a的取值范圍是( 。
A.﹣<a<B.a>C.a<﹣D.﹣<a<0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解下列方程:
(1)3x2+8x﹣3=0(用配方法)
(2)4x2+1=4x(用公式法)
(3)2(x﹣3)2=x2﹣9(用因式分解法)
(4)x2+5x﹣6=0(用適當(dāng)?shù)姆椒ǎ?/span>
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過(guò)點(diǎn)A(-3,0),對(duì)稱軸為直線x=-1,給出四個(gè)結(jié)論:①b2>4ac;②2a+b=0;③a+b+c>0;④若點(diǎn)B(-,y1),C(-,y2)為函數(shù)圖象上的兩點(diǎn),則y1<y2.其中正確結(jié)論是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿分8分)如圖是某貨站傳送貨物的平面示意圖. 為了提高傳送過(guò)程的安全性,工人師傅欲減小傳送帶與地面的夾角,使其由45°改為30°. 已知原傳送帶AB長(zhǎng)為4米.
(1)求新傳送帶AC的長(zhǎng)度;
(2)如果需要在貨物著地點(diǎn)C的左側(cè)留出2米的通道,試判斷距離B點(diǎn)4米的貨物MNQP是否需要挪走,并說(shuō)明理由.(說(shuō)明:⑴⑵的計(jì)算結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.41,≈1.73,≈2.24,≈2.45)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(3,4),B(5,0),連結(jié)AO,AB.點(diǎn)C是線段AO上的動(dòng)點(diǎn)(不與A,O重合),連結(jié)BC,以BC為直徑作⊙H,交x軸于點(diǎn)D,交AB于點(diǎn)E,連結(jié)CD,CE,過(guò)E作EF⊥x軸于F,交BC于G.
(1)AO的長(zhǎng)為 ,AB的長(zhǎng)為 (直接寫出答案)
(2)求證:△ACE∽△BEF;
(3)若圓心H落在EF上,求BC的長(zhǎng);
(4)若△CEG是以CG為腰的等腰三角形,求點(diǎn)C的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com