【題目】已知在平面直角坐標(biāo)系中,點(diǎn)A、B、C、D的坐標(biāo)依次為(﹣1,0),(m,n),(﹣1,10),(﹣9,p),且p≤n.若以A、B、C、D四個(gè)點(diǎn)為頂點(diǎn)的四邊形是菱形,則n的值是 .
【答案】4或5或16
【解析】解:如圖所示:當(dāng)C(﹣9,2),C′(﹣9,5)時(shí),都可以得到以A、B、C、D四個(gè)點(diǎn)為頂點(diǎn)的四邊形是菱形, 同理可得:當(dāng)D(﹣9,8)則對(duì)應(yīng)點(diǎn)C的坐標(biāo)為;(﹣9,18)可以得到以A、B、C、D四個(gè)點(diǎn)為頂點(diǎn)的四邊形是菱形,
故n的值為:4或5或16.
所以答案是:4或5或16.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用菱形的判定方法的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握任意一個(gè)四邊形,四邊相等成菱形;四邊形的對(duì)角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對(duì)角線若垂直,順理成章為菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法:①13個(gè)人中至少有兩個(gè)人的出生月份相同;②任意買一張電影票,座位號(hào)可能是偶數(shù)( )
A.只有①正確B.只有②正確C.①②都正確D.①②都錯(cuò)誤
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,CD是高,CE是中線,CE=CB,點(diǎn)A、D關(guān)于點(diǎn)F對(duì)稱,過(guò)點(diǎn)F作FG∥CD,交AC邊于點(diǎn)G,連接GE.若AC=18,BC=12,則△CEG的周長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AD=3,AB=9,過(guò)點(diǎn)A,C作相距為3的平行線段AE,CF,分別交CD,AB于點(diǎn)E,F(xiàn),則FE的長(zhǎng)是( )
A.5
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察下列單項(xiàng)式:a,﹣4a2,9a3,﹣16a4,…按此規(guī)律第9個(gè)單項(xiàng)式是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,對(duì)于P(m,n),若點(diǎn)Q的坐標(biāo)為(m,|m-n|),則稱點(diǎn)Q為點(diǎn)P的關(guān)聯(lián)點(diǎn).
(1)請(qǐng)直接寫出點(diǎn)(2,2)的關(guān)聯(lián)點(diǎn);
(2)如果點(diǎn)P在一次函數(shù)y=x-1的圖像上,其“關(guān)聯(lián)點(diǎn)”Q與點(diǎn)P重合,求點(diǎn)P的坐標(biāo);
(3)已知點(diǎn)P在一次函數(shù)y=x(x>0)和一次函數(shù)y=x(x>0)所圍成的區(qū)域內(nèi),且點(diǎn)P的“關(guān)聯(lián)點(diǎn)”Q在二次函數(shù)的圖像上,求線段PQ的最大值及此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】任何實(shí)數(shù)a,可用[a]表示不超過(guò)a的最大整數(shù),如[4]=4,[ ]=1,現(xiàn)對(duì)72進(jìn)行如下操作:72 [ ]=8 [ ]=2 [ ]=1,這樣對(duì)72只需進(jìn)行3次操作即可變?yōu)?,類似地,對(duì)81只需進(jìn)行次操作后即可變?yōu)?;(2)只需進(jìn)行3次操作后變?yōu)?的所有正整數(shù)中,最大的是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com