【題目】已知二次函數(shù)y=﹣x2+bx+c,當(dāng)2<x<5時,y隨x的增大而減小,則實(shí)數(shù)b的取值范圍是

【答案】b≤4
【解析】解:拋物線的對稱軸為直線x=﹣ = b,

因為a=﹣1<0,

所以拋物線開口向下,

所以當(dāng)x> b時,y的值隨x值的增大而減小,

而2<x<5時,y隨x的增大而減小,

所以 b≤2.

所以b≤4.

所以答案是b≤4.

【考點(diǎn)精析】本題主要考查了二次函數(shù)的圖象和二次函數(shù)的性質(zhì)的相關(guān)知識點(diǎn),需要掌握二次函數(shù)圖像關(guān)鍵點(diǎn):1、開口方向2、對稱軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn);增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AD=CD,∠DAB=∠ACB=90°,過點(diǎn)D作DE⊥AC,垂足為F,
DE與AB相交于點(diǎn)E.
(1)求證:ABAF=CBCD;
(2)已知AB=15cm,BC=9cm,P是線段DE上的動點(diǎn).設(shè)DP=x cm,梯形BCDP的面積為y
①求y關(guān)于x的函數(shù)關(guān)系式.
②y是否存在最大值?若有求出這個最大值,若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的半徑OD⊥弦AB于點(diǎn)C,連結(jié)AO并延長交⊙O于點(diǎn)E,連結(jié)EC.若AB=8,CD=2,則EC的長為( )

A.2
B.2
C.2
D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等邊△ABC的頂點(diǎn)A、C處各有一只蝸牛,它們同時出發(fā),分別以每分鐘1米的速度由AB和由CA爬行,其中一只蝸牛爬到終點(diǎn)時,另一只也停止運(yùn)動,經(jīng)過t分鐘后,它們分別爬行到D、E處,請問:

1)如圖1,在爬行過程中,CDBE始終相等嗎,請證明?

2)如果將原題中的“由AB和由CA爬行”,改為“沿著ABCA的延長線爬行”,EBCD交于點(diǎn)Q,其他條件不變,蝸牛爬行過程中∠CQE的大小保持不變,請利用圖2說明:∠CQE=60°;

3)如果將原題中“由CA爬行”改為“沿著BC的延長線爬行,連接DEACF”,其他條件不變,如圖3,則爬行過程中,證明:DF=EF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:⊙O是△ABC的外接圓,∠OAB=40°,則∠ACB的大小為( )
A.20°
B.50°
C.20°或160°
D.50°或130°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:等邊△ABC的邊長為2,點(diǎn)D為平面內(nèi)一點(diǎn),且BD= AD=2 ,則CD=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的口袋中,放有三個標(biāo)號分別為1,2,3的質(zhì)地、大小都相同的小球.任意摸出一個小球,記為x,再從剩余的球中任意摸出一個小球,又記為y,得到點(diǎn)(x,y).
(1)用畫樹狀圖或列表等方法求出點(diǎn)(x,y)的所有可能情況;
(2)求點(diǎn)(x,y)在二次函數(shù)y=ax2﹣4ax+c(a≠0)圖象的對稱軸上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司銷售一種進(jìn)價為20 (元/個)的計算器,其銷售量y (萬個)與銷售價格x (元/個)之間為一次函數(shù)關(guān)系,其變化如下表:

價格x (元/個)

30

50

銷售量y (萬個)

5

3

同時,銷售過程中的其他開支(不含進(jìn)價)總計40萬元.若該公司要獲得40萬元的凈利潤,且盡可能讓顧客得到實(shí)惠,那么銷售價格應(yīng)定為多少?
(注:凈利潤=總銷售額﹣總進(jìn)價﹣其他開支)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D、E、F分別為BC、AD、BE的中點(diǎn),若△BFD的面積為6,則 △ABC的面積等于_____________.

查看答案和解析>>

同步練習(xí)冊答案