【題目】如圖,在正方形ABCD中,以AB為直徑作半圓,點(diǎn)P是CD中點(diǎn),BP與半圓交于點(diǎn)Q,連結(jié)DQ.給出如下結(jié)論:

DQ與半圓O相切;;③∠ADQ=2CBP;cosCDQ=.其中正確的是 (請(qǐng)將正確結(jié)論的序號(hào)填在橫線上).

【答案】①③

【解析】

試題解析:如圖1

連接DO,OQ,在正方形ABCD中,ABCD,AB═CD,

P是CD中點(diǎn),O是AB中點(diǎn),

DPOB,DP═OB,

四邊形OBDP是平行四邊形,

ODBP,

∴∠1=OBQ,2=3,

OQ=OB,

∴∠3=OBQ,

∴∠1=2,

AOD和QOD中,

,

∴△AOD≌△QOD,

∴∠OQD=A=90°,

DQ與半圓O相切,

正確;

如圖2

連接AQ,可得:AQB=90°,

在正方形ABCD中,ABCD,

∴∠ABQ=BPC,

設(shè)正方形邊長(zhǎng)為x,則CP=x,

由勾股定理可求:BP=,

cosBPC=,cosABQ=,

=,又AB=x,

可求,BQ=x,

PQ=x,

,

不對(duì);

如圖3

連接AQ,OQ,

知,OQD=90°,又OAD=90°,可求ADQ+AOQ=180°,

∵∠3+AOQ=180°,

∴∠3=ADQ,

知,1+4=90°,

4+CBP=90°,

∴∠CBP=1,

OA=OQ,

∴∠1=2,

∵∠3=1+2,

∴∠3=2CBP,

∴∠ADQ=2CBP,

正確;

如圖4,

過(guò)點(diǎn)Q作QHCD,

易證QHBC,

設(shè)正方形邊長(zhǎng)為x,由知:PQ=x,cosBPC=,

可求:PH=x,HQ=x,

DH=DP+PH=x,

由勾股定理可求:DQ=x,

cosCDQ=,

不正確.

綜上所述:正確的有①③

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一元二次方程 x2﹣3x+5=0的根的情況是(  )

A. 有兩個(gè)不相等的實(shí)數(shù)根 B. 有兩個(gè)相等的實(shí)數(shù)根

C. 只有一個(gè)實(shí)數(shù)根 D. 沒(méi)有實(shí)數(shù)根

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC,以AB為直徑的O與邊BC、AC分別交于D、E兩點(diǎn),DFAC于F.

(1)求證:DF為O的切線;

(2)若cosC=,CF=9,求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各數(shù)中,一定是無(wú)理數(shù)的是(

A. 帶根號(hào)的數(shù) B. 無(wú)限小數(shù)

C. 不循環(huán)小數(shù) D. 無(wú)限不循環(huán)小數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】平行四邊形的一邊長(zhǎng)為6cm,周長(zhǎng)為28cm,則這條邊的鄰邊長(zhǎng)是(
A.22cm
B.16cm
C.11cm
D.8cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y1=x+6與反比例函數(shù)y2=(x<0)的圖象相交于點(diǎn)A、B,其中點(diǎn)A的坐標(biāo)是(-2,4).

(1)求反比例函數(shù)的解析式和點(diǎn)B的坐標(biāo);

(2)觀察圖象,比較當(dāng)x<0時(shí),y1與y2的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把方程x2﹣4x﹣7=0化成(x﹣m)2=n的形式,則m、n的值是(
A.2,7
B.﹣2,11
C.﹣2,7
D.2,11

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在學(xué)校藝術(shù)節(jié)文藝匯演中,甲、乙兩個(gè)舞蹈隊(duì)隊(duì)員的身高的方差依次是1.5、2.5,那么身高更整齊的是______隊(duì)(填“甲”或“乙”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a、b、c為△ABC的三邊,且滿足a2c2b2c2a4b4,則△ABC_____三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案