【題目】如圖,在正方形中,分別為的中點(diǎn),連接交于點(diǎn),將沿對(duì)折,得到,延長(zhǎng)交延長(zhǎng)于點(diǎn)若則的值為( )
A.1B.2C.3D.
【答案】D
【解析】
先根據(jù)折疊的性質(zhì)得到△BCF≌△BPF,Rt△ABM≌Rt△BMP,在Rt△DMF中,MF2=FD2+DM2,列式求出AM,再根據(jù)相似三角形求出AQ,得到BQ的長(zhǎng),再根據(jù)勾股定理求出AE的長(zhǎng),代入即可求解.
如圖,連接BM,
在正方形中,分別為的中點(diǎn),
∵折疊,
∴△BCF≌△BPF
∴BC=BP,∠CBF=∠PBF,CF=PF=DF=
∴AB=BP=且BM=BM
∴Rt△ABM≌Rt△BMP
∵在Rt△DMF中,MF2=FD2+DM2.
∴(+AM)2=()2+(AM)2
∴AM=,
∴DM=-=,
∵DF∥AQ
∴△DFM∽△AQM
∴
即
解得AQ=
∴BQ=AQ+AB=+=1
∵E點(diǎn)是AE的中點(diǎn),
∴BE=,
則AE=
∴=
∴=1+=
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若邊長(zhǎng)為6的正方形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn),得正方形AB′C′D′,記旋轉(zhuǎn)角為a.
(I)如圖1,當(dāng)a=60°時(shí),求點(diǎn)C經(jīng)過(guò)的弧的長(zhǎng)度和線段AC掃過(guò)的扇形面積;
(Ⅱ)如圖2,當(dāng)a=45°時(shí),BC與D′C′的交點(diǎn)為E,求線段D′E的長(zhǎng)度;
(Ⅲ)如圖3,在旋轉(zhuǎn)過(guò)程中,若F為線段CB′的中點(diǎn),求線段DF長(zhǎng)度的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了調(diào)查學(xué)生對(duì)垃圾分類(lèi)及投放知識(shí)的了解情況,從甲、乙兩校各隨機(jī)抽取40名學(xué)生進(jìn)行了相關(guān)知識(shí)測(cè)試,獲得了他們的成績(jī)(百分制),并對(duì)數(shù)據(jù)(成績(jī))進(jìn)行了整理、描述和分析.下面給出了部分信息.
a.甲、乙兩校40名學(xué)生成績(jī)的頻數(shù)分布統(tǒng)計(jì)表如下:
成績(jī)x 學(xué)校 | |||||
甲 | 4 | 11 | 13 | 10 | 2 |
乙 | 6 | 3 | 15 | 14 | 2 |
(說(shuō)明:成績(jī)80分及以上為優(yōu)秀,70~79分為良好,60~69分為合格,60分以下為不合格)
b.甲校成績(jī)?cè)?/span>這一組的是:
70 70 70 71 72 73 73 73 74 75 76 77 78
c.甲、乙兩校成績(jī)的平均分、中位數(shù)、眾數(shù)如下:
學(xué)校 | 平均分 | 中位數(shù) | 眾數(shù) |
甲 | 74.2 | n | 5 |
乙 | 73.5 | 76 | 84 |
根據(jù)以上信息,回答下列問(wèn)題:
(1)寫(xiě)出表中n的值;
(2)在此次測(cè)試中,某學(xué)生的成績(jī)是74分,在他所屬學(xué)校排在前20名,由表中數(shù)據(jù)可知該學(xué)生是_____________校的學(xué)生(填“甲”或“乙”),理由是__________;
(3)假設(shè)乙校800名學(xué)生都參加此次測(cè)試,估計(jì)成績(jī)優(yōu)秀的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)的圖象交于二、四象限內(nèi)的A、B兩點(diǎn),與x軸交于C點(diǎn),點(diǎn)A的坐標(biāo)為(﹣2,3),點(diǎn)B的坐標(biāo)為(4,n).
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)在x軸上是否存在點(diǎn)P,使△APC是直角三角形?若存,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,△ABC內(nèi)接于⊙O,AD⊥BC于D,BE⊥AC于E,AD、BE交于點(diǎn)H.
(1)如圖1,連接OA、OC,若BH=AC,求∠AOC的度數(shù).
(2)如圖2延長(zhǎng)BE交⊙O于點(diǎn)G,求證:HE=GE;
(3)如圖3,在(2)的條件下,P是弦AC上一點(diǎn),過(guò)點(diǎn)P作PM∥BC交AB于點(diǎn)M,若∠PCD+2∠PDC=90°,BM=,AM=,求⊙O半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把個(gè)只有顏色不同的小球分別裝入甲乙丙三個(gè)布袋里其中甲布袋里有個(gè)紅球,個(gè)白球;乙布袋里有個(gè)紅球,個(gè)白球;丙布袋里有個(gè)紅球,個(gè)白球.
求的值,并求從甲、乙兩個(gè)布袋中隨機(jī)各摸出個(gè)小球,求摸出的兩個(gè)小球都是紅球的概率;
利用列表或樹(shù)狀圖法求從甲、乙、丙三個(gè)布袋中隨機(jī)各摸出個(gè)小球,求摸出的三個(gè)小球是一紅二白的概率.
將丙袋子中原有的所有小球拿出,另裝個(gè)只有顏色不同的球,其中個(gè)白球,個(gè)紅球,若從袋中取出若千個(gè)紅球,換成相同數(shù)量的黃球.?dāng)嚢杈鶆蚝,使得隨機(jī)從袋中摸出兩個(gè)球,顏色是一白一黃的概率為,(不放回拿球)求袋中有幾個(gè)紅球被換成了黃球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】A,C,B三地依次在一條筆直的道路上甲、乙兩車(chē)同時(shí)分別從A,B兩地出發(fā),相向而行.甲車(chē)從A地行駛到B地就停止,乙車(chē)從B地行駛到A地后,立即以相同的速度返回B地,在整個(gè)行駛的過(guò)程中,甲、乙兩車(chē)均保持勻速行駛,甲、乙兩車(chē)距C地的距離之和y(km)與甲車(chē)出發(fā)的間(b)之間的函數(shù)關(guān)系如圖所示,則甲車(chē)到達(dá)B地時(shí),乙車(chē)距B地的距離為_____km.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了減少霧霾的侵狀,某市環(huán)保局與市委各部門(mén)協(xié)商,要求市民在春節(jié)期間禁止燃放煙花爆竹,為了征集市民對(duì)禁燃的意見(jiàn),政府辦公室進(jìn)行了抽樣調(diào)查,調(diào)查意見(jiàn)表設(shè)計(jì)為:“滿意““一般””無(wú)所謂””反對(duì)”四個(gè)選項(xiàng),調(diào)查結(jié)果匯總制成如下不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)提供的信息解答下面的問(wèn)題.
(1)參與問(wèn)卷調(diào)查的人數(shù)為 .
(2)扇形統(tǒng)計(jì)圖中的m= ,n= .補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若本市春節(jié)期間留守市區(qū)的市民有32000人,請(qǐng)你估計(jì)他們中持“反對(duì)”意見(jiàn)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:四邊形 ABCD 內(nèi)接于⊙O,連接 AC、BD,∠BAD+2∠ACB=180°.
(1)如圖 1,求證:點(diǎn) A 為弧 BD 的中點(diǎn);
(2)如圖 2,點(diǎn) E 為弦 BD 上一點(diǎn),延長(zhǎng) BA 至點(diǎn) F,使得 AF=AB,連接 FE 交 AD 于點(diǎn) P,過(guò)點(diǎn) P 作 PH⊥AF 于點(diǎn) H,AF=2AH+AP,求證:AH:AB=PE:BE;
(3)在(2)的條件下,如圖 3,連接 AE,并延長(zhǎng) AE 交⊙O 于點(diǎn) M,連接 CM,并延長(zhǎng) CM 交 AD 的延長(zhǎng)線于點(diǎn) N,連接 FD,∠MND=∠MED,DF=12﹒sin∠ACB,MN=,求 AH 的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com