【題目】探索與應(yīng)用.先填寫(xiě)下表,通過(guò)觀察后再回答問(wèn)題:

a

0.0001

0.01

1

100

10000

0.01

x

1

y

100

1)表格中x=   y=   ;

2)從表格中探究a數(shù)位的規(guī)律,并利用這個(gè)規(guī)律解決下面兩個(gè)問(wèn)題:

①已知≈3.16,則   ;②已知=1.8,若=180,則a=   ;

3)拓展:已知,若,則b=   

【答案】(1)0.1,10;(2)31.6,32400;(3)0.012.

【解析】

1)由表格得出規(guī)律,求出xy的值即可;
2)根據(jù)算術(shù)平方根的被開(kāi)方數(shù)擴(kuò)大100倍,算術(shù)平方根擴(kuò)大10倍,可得答案;

3)根據(jù)立方根的被開(kāi)方數(shù)縮小1000倍,立方根縮小10倍,可得答案.

1x=0.1,y=10,故答案為:0.1,10
2)①∵≈3.16,

=31.6,

=1.8

a=32400,

故答案為:31.6,32400;
4)∵,

b=0.012,故答案為:0.012

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖示,若△ABC內(nèi)一點(diǎn)P滿足∠PAC=∠PBA=∠PCB,則點(diǎn)P為△ABC的布洛卡點(diǎn).三角形的布洛卡點(diǎn)(Brocard point)是法國(guó)數(shù)學(xué)家和數(shù)學(xué)教育家克洛爾(A.L.Crelle 1780﹣1855)于1816年首次發(fā)現(xiàn),但他的發(fā)現(xiàn)并未被當(dāng)時(shí)的人們所注意,1875年,布洛卡點(diǎn)被一個(gè)數(shù)學(xué)愛(ài)好者法國(guó)軍官布洛卡(Brocard 1845﹣1922)重新發(fā)現(xiàn),并用他的名字命名.問(wèn)題:已知在等腰直角三角形DEF中,∠EDF=90°,若點(diǎn)Q為△DEF的布洛卡點(diǎn),DQ=1,則EQ+FQ=(
A.5
B.4
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校植物園沿路護(hù)欄的紋飾部分準(zhǔn)備設(shè)計(jì)成若干個(gè)形狀、大小完全相同的四邊形圖案,每平移一個(gè)圖案,紋飾長(zhǎng)度就增加cm(如圖)所示,已知每個(gè)四邊形圖案的水平方向的對(duì)角線長(zhǎng)30cm

1)若=26cm,且該紋飾要用231個(gè)四邊形圖案,求紋飾的長(zhǎng)度;

2)當(dāng)=20cm時(shí),若保持(1)中紋飾長(zhǎng)度不變,則需要多少個(gè)這樣的四邊形圖案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料:
我們經(jīng)常通過(guò)認(rèn)識(shí)一個(gè)事物的局部或其特殊類型,來(lái)逐步認(rèn)識(shí)這個(gè)事物;比如我們通過(guò)學(xué)習(xí)特殊的四邊形,即平行四邊形(繼續(xù)學(xué)習(xí)它們的特殊類型如矩形、菱形等)來(lái)逐步認(rèn)識(shí)四邊形;

我們對(duì)課本里特殊四邊形的學(xué)習(xí),一般先學(xué)習(xí)圖形的定義,再探索發(fā)現(xiàn)其性質(zhì)和判定方法,然后通過(guò)解決簡(jiǎn)單的問(wèn)題鞏固所學(xué)知識(shí);
請(qǐng)解決以下問(wèn)題:
如圖,我們把滿足AB=AD、CB=CD且AB≠BC的四邊形ABCD叫做“箏形”;
(1)寫(xiě)出箏形的兩個(gè)性質(zhì)(定義除外);
(2)寫(xiě)出箏形的兩個(gè)判定方法(定義除外),并選出一個(gè)進(jìn)行證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】看圖填空,并在括號(hào)內(nèi)說(shuō)明理由:

BD平分∠ABC(已知)

__________=____________________

又∠1=D(已知)

__________=____________________

______________________________

∴∠ABC+__________=180°__________

又∠ABC=55°(已知)

∴∠BCD=__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中, A、B兩點(diǎn)分別在x軸、y軸的正半軸上,且OB = OA=3.(1)、求點(diǎn)A、B的坐標(biāo);(2)、已知點(diǎn)C(-22),求△BOC的面積;(3)、點(diǎn)P是第一象限角平分線上一點(diǎn),若,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,BD為ABC的的角平分線,且BD=BC,E為BD延長(zhǎng)線上的一點(diǎn),BE=BA,過(guò)E作EFAB,F(xiàn)為垂足下列結(jié)論①△ABD≌△EBC;②∠BCE+BCD=180°;AD=AE=EC;BA+BC=2BF其中正確的是

A①②③ B①③④ C①②④ D①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,AC為對(duì)角線,點(diǎn)E在AB邊上,EF⊥AC于點(diǎn)F,連接EC,AF=3,△EFC的周長(zhǎng)為12,則EC的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC中,AB=AC=6cm,B=C,BC=4cm,點(diǎn)DAB的中點(diǎn).

(1)如果點(diǎn)P在線段BC上以1cm/s的速度由點(diǎn)B向點(diǎn)C運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由點(diǎn)C向點(diǎn)A運(yùn)動(dòng).當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPD與△CQP全等?

(2)若點(diǎn)Q1.5cm/s的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來(lái)的運(yùn)動(dòng)速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針沿△ABC三邊運(yùn)動(dòng),則經(jīng)過(guò)_____秒后,點(diǎn)P與點(diǎn)Q第一次在△ABCAC邊上相遇?(在橫線上直接寫(xiě)出答案,不必書(shū)寫(xiě)解題過(guò)程)

查看答案和解析>>

同步練習(xí)冊(cè)答案