【題目】ABCD中,點P和點Q是直線BD上不重合的兩個動點,AP∥CQ,AD=BD.

1)如圖,求證:BP+BQ=BC;

2)請直接寫出圖,圖BP、BQBC三者之間的數(shù)量關系,不需要證明;

3)在(1)和(2)的條件下,若DQ=2DP=6,則BC=   

【答案】(1)證明見解析(2)證明見解析(3)BC=4或8

【解析】1)根據(jù)平行四邊形的性質(zhì)證明△ADP≌△CBQ,得BQ=PD,由AD=BD=BC得:BC=BD=BP+PD=BP+BQ;

2)圖,證明△ABP≌△CDQ,得PB=DQ,根據(jù)線段的和得結論;

,證明△ADP≌△CBQ,得PD=BQ,同理得出結論;

3)分別代入圖和圖條件下的BC,計算即可.

解:(1)∵四邊形ABCD是平行四邊形,

∴AD∥BC,AD=BC,∴∠ADB=∠CBD,

∵AP∥CQ,∴∠APQ=∠CQB,∴△ADP≌△CBQ,

∴DP=BQ,∵AD=BD,AD=BC,∴BD=BC,∵BD=BP+DP,∴BC=BP+BQ;

(2)圖②:BQ﹣BP=BC,理由是:∵AP∥CQ,∴∠APB=∠CQD,

∵AB∥CD,∴∠ABD=∠CDB,∴∠ABP=∠CDQ,∵AB=CD,∴△ABP≌△CDQ,

∴BP=DQ,∴BC=AD=BD=BQ﹣DQ=BQ﹣BP;

圖③:BP﹣BQ=BC,理由是:同理得:△ADP≌△CBQ,∴PD=BQ,

∴BC=AD=BD=BP﹣PD=BP﹣BQ;

(3)圖①,BC=BP+BQ=DQ+PD=2+6=8,圖②,BC=BQ﹣BP=PD﹣DQ=6﹣2=4,∴BC=4或8.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】分別以△ABC的各邊為一邊向三角形外部作正方形,若這三個正方形的面積分別為6cm2、8cm2、10cm2,則△ABC_____直角三角形.(填不是”)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩家櫻桃采摘園的品質(zhì)相同,銷售價格也相同,“五一期間”,兩家均推出了優(yōu)惠方案,甲采摘園的優(yōu)惠方案是:游客進園需購買50元的門票,采摘的草莓六折優(yōu)惠;乙采摘園的優(yōu)惠方案是:游客進園不需購買門票,采摘園的草莓超過一定數(shù)量后,超過部分打折優(yōu)惠.優(yōu)惠期間,設某游客的草莓采摘量為x(千克),在甲采摘園所需總費用為y1(元),在乙采摘園所需總費用為y2(元),圖中折線OAB表示y2與x之間的函數(shù)關系.

(1)甲、乙兩采摘園優(yōu)惠前的草莓銷售價格是每千克_____元;

(2)求y1、y2與x的函數(shù)表達式;

(3)在圖中畫出y1與x的函數(shù)圖象,若某人想在“五一期間”采摘櫻桃25千克,那么甲、乙哪個采摘園較為優(yōu)惠?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】因式分解:m2﹣m=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】實數(shù)8的立方根是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】200622005×2007(利用公式計算)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若關于x的一元二次方程(x-2)(x-3)=a有實數(shù)根x1、x2,且x1≠x2,有下列結論:①x1=2,x2=3 ②a>-、鄱魏瘮(shù) 的圖象與x軸交點坐標為(2,0),(3,0),其中正確的結論的個數(shù)是(  )

A. 0個 B. 1個 C. 2個 D. 3個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】方程x+2y=3在實數(shù)范圍內(nèi)的解有(

A.無數(shù)個B.1C.2D.以上都不對

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明、小剛和小紅各自隨機選擇本周日的上午或下午去揚州科技館參觀.

(1) 小明、小剛本周日的上午去參觀的概率為_____;

(2) 求他們?nèi)嗽谕话胩烊⒂^的概率。

查看答案和解析>>

同步練習冊答案