【題目】計算
(1) (﹣24)﹣(﹣36) +(+20)
(2)
(3)
(4)
【答案】(1)32;(2)24;(3)-18 ;(4).
【解析】
(1)直接利用有理數(shù)加減運算法則計算得出答案;
(2)直接利用有理數(shù)乘除運算法則計算得出答案;
(3)直接利用乘法分配律計算得出答案;
(4)把 變形為(100- ),再利用乘法分配律計算得出答案.
解:(1) (﹣24)﹣(﹣36) +(+20)
=-24+36+20
=32;
(2)
=4×3×2
=24;
(3)
= (-24)×-(-24)× -(-24)×
= -44+8+18
= -18 ;
(4)
=(100- )×(-3)
=100×(-3)-×(-3)
=-300+
=.
故答案為:(1)32;(2)24;(3)-18 ;(4).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是由邊長為1的小正方形組成的網(wǎng)格,小格的頂點叫格點,在正方形網(wǎng)格的三條不同的實線上各取一個格點,使其中任意兩點不在同一實線上,得到格點△ABC.
(1)AC= :△ABC是 三角形;
(2)請在下面的正方形網(wǎng)格中各畫出一個格點直角三角形,使其中任意兩點不在同一實線上,并且三個網(wǎng)格中的三角形互不全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AD=4,對角線AC與BD交于點O,OE⊥AC交BC于點E,CE=3,則矩形ABCD的面積為( 。
A.B.C.12D.32
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在中,,是角平分線,是高,和交于點.
(1)若,則____________,____________;
(2)結(jié)合(1)中的結(jié)果,探究和的關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著移動互聯(lián)網(wǎng)的快速發(fā)展,基于互聯(lián)網(wǎng)的共享單車應(yīng)運而生.為了解某小區(qū)居民使用共享單車的情況,某研究小組隨機采訪該小區(qū)的10位居民,得到這10位居民一周內(nèi)使用共享單車的次數(shù)分別為:17,12,15,20,17,0,7,26,17,9.
(1)這組數(shù)據(jù)的中位數(shù)是 ,眾數(shù)是 ;
(2)計算這10位居民一周內(nèi)使用共享單車的平均次數(shù);
(3)若該小區(qū)有200名居民,試估計該小區(qū)居民一周內(nèi)使用共享單車的總次數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,點F是BC延長線上一點,以CF為邊作菱形CDEF,使菱形CDEF與點A在BC的同側(cè),連接BE,點G是BE的中點,連接AG、DG.
(1)如圖①,當(dāng)∠BAC=∠DCF=90°時,AG與DG的位置關(guān)系為________,數(shù)量關(guān)系為________;
(2)如圖②,當(dāng)∠BAC=∠DCF=60°時,AG與DG的位置關(guān)系為________,數(shù)量關(guān)系為________,請證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,有以下結(jié)論:①abc>0,②3a+c<0,③a﹣b+c>0,④4a+2b+c>0,⑤若點(﹣2,y1)和(﹣,y2)在該圖象上,則y1>y2,其中正確的結(jié)論是 .(填入正確結(jié)論的序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,E、F、G、H分別是AB、BD、CD、AC的中點.
(1)求證:四邊形EFGH是平行四邊形;
(2)當(dāng)AD⊥BC時,四邊形EFGH是哪種特殊的平行四邊形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC和△A'B'C'的頂點都在格點上.
(1)將△ABC繞點B順時針旋轉(zhuǎn)90°后得到△A1BC1;
(2)若△A'B'C'是由△ABC繞某一點旋轉(zhuǎn)某一角度得到,則旋轉(zhuǎn)中心的坐標是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com