【題目】如圖,貨輪甲從港口O出發(fā),沿東偏南的方向航行20海里后到達A處.(已知四個圓圈的半徑(由小到大)分別是5海里,10海里,15海里,20海里.)
(1)寫出在港口O觀測燈塔B,C的方向及它們與港口的距離;
(2)已知燈塔D在港口O的南偏西方向上,且與燈塔B相距35海里,在圖中標出燈塔D的位置.
(3)貨輪乙從港口O出發(fā),沿正東方向航行15海里到達P處后,需把航行方向調整到與貨輪甲的航行方向一致,此時貨輪乙應向左(或右)轉多少度?并畫出貨輪乙航行線路示意圖.
【答案】(1)燈塔B的方向是東偏北,燈塔C的方向是正北方向,燈塔B與港口O相距離20海里,燈塔C與港口O相距離10海里;(2)詳見解析;(3)貨輪乙應向右轉,畫圖見解析
【解析】
(1)根據(jù)方位角的定義以及題意可求出港口O觀測燈塔B,C的方向及它們與港口的距離;(2)根據(jù)方位角的定義即可找出燈塔D的位置;(3)根據(jù)甲的方向航行以及乙的航行方向可求出貨輪乙應向左(或右)轉的角度,以及航行線路示意圖.
(1)燈塔B的方向是東偏北,
燈塔C的方向是正北方向,
燈塔B與港口O相距離20海里,
燈塔C與港口O相距離10海里;
(2)燈塔D的位置如圖所示;
(3)甲沿東偏南航行,乙沿正東方向航行
要使乙與甲的航行方向一致
∴貨輪乙應向右轉即順時針轉60°,
航行線路如圖所示.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線分別交x軸、y軸于A、B兩點,拋物線經(jīng)過A、B兩點,點C是拋物線與x軸的另一個交點(與A點不重合).
(1)求拋物線的解析式;
(2)求△ABC的面積;
(3)在拋物線的對稱軸上,是否存在點M,使△ABM為等腰三角形?若不存在,請說明理由;若存在,求出點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正比例函數(shù)y=kx的圖像經(jīng)過點A,點A在第四象限.過點A做AH⊥x軸,垂足為點H,點A的橫坐標為3,且△AOH的面積為4.5.
(1)求該正比例函數(shù)的解析式;
(2)在x軸上是否存在一點P,使△AOP的面積為6?若存在,求點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,在△ABC中,∠A=90°,AB=AC,D為BC的中點,E,F分別是AB,AC上的點,且BE=AF.
(1)請你判斷△DEF形狀,并說明理由;
(2)若BE=2cm,CF=4cm,求EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點B的坐標為(1,0).
(1)畫出△ABC關于x軸對稱的△A1B1C1;
(2)畫出將△ABC繞原點O按逆時針旋轉90°所得的△A2B2C2,并寫出點C2的坐標;
(3)△A1B1C1與△A2B2C2成中心對稱嗎?若成中心對稱,寫出對稱中心的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】以點A為頂點作兩個等腰直角三角形(△ABC,△ADE),如圖所示放置,使得一直角邊重合,連接BD,CE.
(1)求證:BD=CE;(2)延長BD,交CE于點F,求∠BFC的度數(shù);
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線C:y=mx2+4x+1.
(1)當拋物線C經(jīng)過點A(-5,6)時,求拋物線的表達式及頂點坐標;
(2)當直線y=-x+l與直線y=x+3關于拋物線C的對稱軸對稱時,求m的值;
(3)若拋物線C:y=mx2+4x+l(m>0)與x軸的交點的橫坐標都在-l和0之間(不包括-l和0).結合函數(shù)的圖象,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知矩形ABCD中,E是AD邊上的一個動點,點F,G,H分別是BC,BE,CE的中點.
(1)求證:△BGF≌△FHC;
(2)設AD=a,當四邊形EGFH是正方形時,求矩形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中, △ABC的三個頂點的位置如圖所示,點A'的坐標是
(-2,2), 現(xiàn)將△ABC平移,使點A變換為點A',點B′、C′分別是B、C的對應點。
(1)請畫出平移后的像△A'B'C'(不寫畫法) ,并直接寫出點B′、C′的坐標:
B′ ( ) 、C′ ( ) ;
(2)若△ABC 內部一點P的坐標為(a,b),則點P 的對應點P ′的坐標是 ( ) .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com