一座拱橋的輪廓是拋物線型(如圖1所示),拱高6m,跨度20m,相鄰兩支柱間的距離均為5m.
(1)將拋物線放在所給的直角坐標系中(如圖2所示),其表達式是y=ax2+c的形式.請根據(jù)所給的數(shù)據(jù)求出a,c的值.
(2)求支柱MN的長度.
(3)拱橋下地平面是雙向行車道(正中間是一條寬2m的隔離帶),其中的一條行車道能否并排行駛寬2m、高3m的三輛汽車(汽車間的間隔忽略不計)?請說說你的理由.
(1)根據(jù)題目條件,A、B、C的坐標分別是(-10,0)、(10,0)、(0,6).
將B、C的坐標代入y=ax2+c,得
6=c
0=100a+c.

解得a=-
3
50
,c=6

所以拋物線的表達式是y=-
3
50
x2+6


(2)可設N(5,yN),于是yN=-
3
50
×52+6=4.5

從而支柱MN的長度是10-4.5=5.5米;

(3)設DE是隔離帶的寬,EG是三輛車的寬度和,則G點坐標是(7,0),
(7=2÷2+2×3).
過G點作GH垂直AB交拋物線于H,則yH=-
3
50
×72+6=3+
3
50
>3.
根據(jù)拋物線的特點,可知一條行車道能并排行駛這樣的三輛汽車.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

直線y=
1
2
x-2與x、y軸分別交于點A、C.拋物線的圖象經(jīng)過A、C和點B(1,0).
(1)求拋物線的解析式;
(2)在直線AC上方的拋物線上有一動點D,當D與直線AC的距離DE最大時,求出點D的坐標,并求出最大距離是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=ax2+bx(a≠0)的頂點在直線y=-
1
2
x-1
上,且過點A(4,0).
(1)求這個拋物線的解析式;
(2)設拋物線的頂點為P,是否在拋物線上存在一點B,使四邊形OPAB為梯形?若存在,求出點B的坐標;若不存在,請說明理由;
(3)設點C(1,-3),請在拋物線的對稱軸確定一點D,使|AD-CD|的值最大,請直接寫出點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,拋物線與x軸交于點A、B(點A在點B的左側),與y軸交于點C(0,4),頂點為(1,5).
(1)求該拋物線的函數(shù)關系式;
(2)連接AC、BC,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知一次函數(shù)y=-
3
4
x+6
與坐標軸交于A、B點,AE是∠BAO的平分線,過點B作BE⊥AE,垂足為E,過E作x軸的垂線,垂足為M.
(1)求證:M為OB的中點;
(2)求以E為頂點,且經(jīng)過點A的拋物線解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某飲料經(jīng)營部每天的固定成本為200元,其銷售的飲料每瓶進價為5元.銷售單價與日均銷售量的關系如下:
售價單價(元)67891112
日均銷售量(瓶)480440400360320240
(1)若記銷售單價比每瓶進價多x元時,日均毛利潤(毛利潤=售價-進價-固定成本)為y元,求y關于x的函數(shù)解析式和自變量的取值范圍;
(2)若要使日均毛利潤達到最大,銷售單價應定為多少元?最大日均毛利潤為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,一名男生推鉛球,鉛球行進高度y(單位:m)與水平距離x(單位:m)之間的關系是y=-
1
12
x2+
2
3
x+
5
3
.則他將鉛球推出的距離是______m.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

武漢銀河影院對去年賀歲片《非誠勿攏》的售票情況進行調(diào)查:若票價定為20元/張,則每場可賣電影票400張,若單價每漲1元,每場就少售出8張,設每張票漲價x元(x為正整數(shù)).
(1)求每場的收入y與x的函數(shù)關系式;
(2)設某場的收入為9000元,此收入是否是最大收入?請說明理由;
(3)請借助圖象分析,售價在什么范圍內(nèi)每趟的總收入不低于8000元?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

方程
1
x
-2=x2-2x
實根的情況是(  )
A.有三個實根B.有兩個實根C.有一個實根D.無實根

查看答案和解析>>

同步練習冊答案