直線y=
1
2
x-2與x、y軸分別交于點(diǎn)A、C.拋物線的圖象經(jīng)過(guò)A、C和點(diǎn)B(1,0).
(1)求拋物線的解析式;
(2)在直線AC上方的拋物線上有一動(dòng)點(diǎn)D,當(dāng)D與直線AC的距離DE最大時(shí),求出點(diǎn)D的坐標(biāo),并求出最大距離是多少?
(1)在直線解析式y(tǒng)=
1
2
x-2中,令x=0,得y=-2;令y=0,得x=4,
∴A(4,0),C(0,-2).
設(shè)拋物線的解析式為y=ax2+bx+c,
∵點(diǎn)A(4,0),B(1,0),C(0,-2)在拋物線上,
16a+4b+c=0
a+b+c=0
c=-2
,
解得a=-
1
2
,b=
5
2
,c=-2.
∴拋物線的解析式為:y=-
1
2
x2+
5
2
x-2.

(2)設(shè)點(diǎn)D坐標(biāo)為(x,y),則y=-
1
2
x2+
5
2
x-2.
在Rt△AOC中,OA=4,OC=2,由勾股定理得:AC=2
5

如答圖1所示,連接CD、AD.
過(guò)點(diǎn)D作DF⊥y軸于點(diǎn)F,過(guò)點(diǎn)A作AG⊥FD交FD的延長(zhǎng)線于點(diǎn)G,
則FD=x,DG=4-x,OF=AG=y,F(xiàn)C=y+2.

S△ACD=S梯形AGFC-S△CDF-S△ADG
=
1
2
(AG+FC)•FG-
1
2
FC•FD-
1
2
DG•AG
=
1
2
(y+y+2)×4-
1
2
(y+2)•x-
1
2
(4-x)•y
=2y-x+4
將y=-
1
2
x2+
5
2
x-2代入得:S△ACD=2y-x+4=-x2+4x=-(x-2)2+4,
∴當(dāng)x=2時(shí),△ACD的面積最大,最大值為4.
當(dāng)x=2時(shí),y=1,∴D(2,1).
∵S△ACD=
1
2
AC•DE,AC=2
5

∴當(dāng)△ACD的面積最大時(shí),高DE最大,
則DE的最大值為:
4
1
2
AC
=
4
1
2
×2
5
=
4
5
5

∴當(dāng)D與直線AC的距離DE最大時(shí),點(diǎn)D的坐標(biāo)為(2,1),最大距離為
4
5
5
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知拋物線y=-
3
4
x2+bx+c與坐標(biāo)軸交于A,B,C三點(diǎn),點(diǎn)A的橫坐標(biāo)為-1,過(guò)點(diǎn)C(0,3)的直線y=-
3
4t
x+3與x軸交于點(diǎn)Q,點(diǎn)P是線段BC上的一個(gè)動(dòng)點(diǎn),PH⊥OB于點(diǎn)H.若PB=5t,且0<t<1.
(1)確定b,c的值;
(2)寫(xiě)出點(diǎn)B,Q,P的坐標(biāo)(其中Q,P用含t的式子表示);
(3)依點(diǎn)P的變化,是否存在t的值,使△PQB為等腰三角形?若存在,求出所有t的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖1,拋物線y=-
1
4
x2+
1
4
x+3
與直線y=-
1
4
x-
3
4
交于A、B兩點(diǎn).如圖2,質(zhì)地均勻的正四面體骰子的各個(gè)面上依次標(biāo)有數(shù)字-1、1、3、4.隨機(jī)拋擲這枚骰子兩次,把第一次著地一面的數(shù)字m記做P點(diǎn)的橫坐標(biāo),第二次著地一面的數(shù)字n記做P點(diǎn)的縱坐標(biāo),則點(diǎn)P(m,n)落在如圖1中的拋物線與直線圍成區(qū)域內(nèi)(圖中陰影部分,含邊界)的概率是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在直角坐標(biāo)系中,⊙A的半徑為4,圓心A的坐標(biāo)為(2,0),⊙A與x軸交于E、F兩點(diǎn),與y軸交于C、D兩點(diǎn),過(guò)點(diǎn)C作⊙A的切線BC,交x軸于點(diǎn)B.
(1)求直線CB的解析式;
(2)若拋物線y=ax2+bx+c的頂點(diǎn)在直線BC上,與x軸的交點(diǎn)恰為點(diǎn)E、F,求該拋物線的解析式;
(3)試判斷點(diǎn)C是否在拋物線上;
(4)在拋物線上是否存在三個(gè)點(diǎn),由它構(gòu)成的三角形與△AOC相似?直接寫(xiě)出兩組這樣的點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

向空中發(fā)射一枚炮彈,經(jīng)x秒后的高度為y米,且時(shí)間與高度的關(guān)系為y=ax2+bx+c(a≠0)、若此炮彈在第7秒與第14秒時(shí)的高度相等,則在下列時(shí)間中炮彈所在高度最高的是( 。
A.第8秒B.第10秒C.第12秒D.第15秒

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某商店購(gòu)進(jìn)一批單價(jià)為8元的商品,如果按每件10元出,那么每天可銷(xiāo)售100件,經(jīng)調(diào)查發(fā)現(xiàn),這種商品的銷(xiāo)售單價(jià)每提高1元,其銷(xiāo)售量相應(yīng)減少10件.將銷(xiāo)售價(jià)定為多少,才能使每天所獲銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+c(a>0)的圖象的頂點(diǎn)為D點(diǎn),與y軸交于C點(diǎn),與x軸交于A、B兩點(diǎn),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0),OB=OC,tan∠ACO=
1
3

(1)求這個(gè)二次函數(shù)的表達(dá)式.
(2)經(jīng)過(guò)C、D兩點(diǎn)的直線,與x軸交于點(diǎn)E,在拋物線上是否存在這樣的點(diǎn)F,使以點(diǎn)A、C、E、F為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,二次函數(shù)y=
1
2
x2+bx-
3
2
的圖象與x軸交于點(diǎn)A(-3,0)和點(diǎn)B,以AB為邊在x軸上方作正方形ABCD,點(diǎn)P是x軸上一動(dòng)點(diǎn),連接DP,過(guò)點(diǎn)P作DP的垂線與y軸交于點(diǎn)E.
(1)請(qǐng)直接寫(xiě)出點(diǎn)D的坐標(biāo):______;
(2)當(dāng)點(diǎn)P在線段AO(點(diǎn)P不與A、O重合)上運(yùn)動(dòng)至何處時(shí),線段OE的長(zhǎng)有最大值,求出這個(gè)最大值;
(3)是否存在這樣的點(diǎn)P,使△PED是等腰三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo)及此時(shí)△PED與正方形ABCD重疊部分的面積;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

一座拱橋的輪廓是拋物線型(如圖1所示),拱高6m,跨度20m,相鄰兩支柱間的距離均為5m.
(1)將拋物線放在所給的直角坐標(biāo)系中(如圖2所示),其表達(dá)式是y=ax2+c的形式.請(qǐng)根據(jù)所給的數(shù)據(jù)求出a,c的值.
(2)求支柱MN的長(zhǎng)度.
(3)拱橋下地平面是雙向行車(chē)道(正中間是一條寬2m的隔離帶),其中的一條行車(chē)道能否并排行駛寬2m、高3m的三輛汽車(chē)(汽車(chē)間的間隔忽略不計(jì))?請(qǐng)說(shuō)說(shuō)你的理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案