【題目】如圖,在矩形OABC中,點(diǎn)A在x軸上,點(diǎn)C在y軸上,點(diǎn)B的坐標(biāo)是,將沿直線BD折疊,使得點(diǎn)C落在對(duì)角線OB上的點(diǎn)E處,折痕與OC交于點(diǎn)D.
(1)求直線OB的解析式及線段OE的長(zhǎng).
(2)求直線BD的解析式及點(diǎn)E的坐標(biāo).
【答案】(1)直線OB的解析式為,;(2)直線BD的解析式為,.
【解析】
(1)先利用待定系數(shù)法求直線OB的解析式,再利用兩點(diǎn)間的距離公式計(jì)算出OB,然后根據(jù)折疊的性質(zhì)得到BE=BC=6,從而可計(jì)算出OE=OB-BE=4;
(2)設(shè)D(0,t),則OD=t,CD=8-t,根據(jù)折疊的性質(zhì)得到DE=DC=8-t,∠DEB=∠DCB=90°,根據(jù)勾股定理得(8-t)2+42=t2,求出t得到D(0,5),于是可利用待定系數(shù)法求出直線BD的解析式;設(shè)E(x,),利用OE=4得到x2+()2=42,然后解方程求出x即可得到E點(diǎn)坐標(biāo).
解:(1)設(shè)直線OB的解析式為,
將點(diǎn)代入中,得,
∴,
∴直線OB的解析式為.
∵四邊形OABC是矩形.且,
∴,,
∴,.
根據(jù)勾股定理得,
由折疊知,.
∴
(2)設(shè)D(0,t)
,
∴,
由折疊知,,,
在中,,
根據(jù)勾股定理得,
∴,
∴,
∴,.
設(shè)直線BD的解析式為.
∵,
∴,
∴,
∴直線BD的解析式為.
由(1)知,直線OB的解析式為.
設(shè)點(diǎn),
根據(jù)的面積得,
∴,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某水果商店以每箱200元價(jià)格從市場(chǎng)上購(gòu)進(jìn)一批蘋(píng)果共8箱,若以每箱蘋(píng)果凈重
30千克為標(biāo)準(zhǔn),超過(guò)千克數(shù)記為正數(shù),不足千克數(shù)記為負(fù)數(shù),稱重后記錄如下:
(1)這8箱蘋(píng)果一共中多少千克,購(gòu)買這批蘋(píng)果一共花了多少錢(qián)?
(2)若把蘋(píng)果的銷售單價(jià)定為每千克元,那么銷售這批蘋(píng)果(損耗忽略不計(jì))獲得的總銷售金額為_____元,獲得利潤(rùn)為____________元(用含字母的式子表示);
(3)在(2)條件下,若水果商店計(jì)劃共獲利,請(qǐng)你通過(guò)列方程并求出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知線段AB和CD的公共部分BD=AB= CD,線段AB、CD的中點(diǎn)E,F之間距離是10cm,求AB,CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,兩摞規(guī)格完全相同的課本整齊疊放在講臺(tái)上請(qǐng)根據(jù)圖中所給出的數(shù)據(jù)信息,回答下列問(wèn)題:
(1)每本課本的厚度為______cm;
(2)若有一摞上述規(guī)格的課本x本,整齊疊放在講臺(tái)上,請(qǐng)用含x的代數(shù)式表示出這一摞數(shù)學(xué)課本的頂部距離地面的高度為______cm;
(3)當(dāng)x=48時(shí),若從中取走10本,求余下的課本的頂部距離地面的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們?cè)谏钪薪?jīng)常使用的數(shù)是十進(jìn)制數(shù),如,表示十進(jìn)制的數(shù)要用到10個(gè)數(shù)碼(也叫數(shù)字):0,1,2,3,4,5,6,7,8,9.計(jì)算機(jī)中常用的十六進(jìn)制是逢16進(jìn)1的計(jì)數(shù)制,采用數(shù)字和字母共16個(gè)計(jì)數(shù)符號(hào),這些符號(hào)與十進(jìn)制的對(duì)應(yīng)關(guān)系如下表
十六進(jìn)制 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
十進(jìn)制 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
例如:十六進(jìn)制數(shù),即十六進(jìn)制數(shù)71B相當(dāng)于十進(jìn)制數(shù)1819.那么十六進(jìn)制數(shù)2E8相當(dāng)于十進(jìn)制數(shù)( )
A.744B.736C.536D.512
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017山東省日照市)如圖,在平面直角坐標(biāo)系中,經(jīng)過(guò)點(diǎn)A的雙曲線(x>0)同時(shí)經(jīng)過(guò)點(diǎn)B,且點(diǎn)A在點(diǎn)B的左側(cè),點(diǎn)A的橫坐標(biāo)為,∠AOB=∠OBA=45°,則k的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AC為直徑的⊙O交BC于點(diǎn)D,交AB于點(diǎn)E,過(guò)點(diǎn)D作DF⊥AB,垂足為F,連接DE.
(1)求證:直線DF與⊙O相切;
(2)若AE=7,BC=6,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A、B、C、D的坐標(biāo)分別為(-2,2),(一2,1),(3,1),(3,2),線段AD、AB、BC組成的圖形記作G,點(diǎn)P沿D-A-B-C移動(dòng),設(shè)點(diǎn)P移動(dòng)的距離為a,直線l:y=-x+b過(guò)點(diǎn)P,且在點(diǎn)P移動(dòng)過(guò)程中,直線l隨點(diǎn)P移動(dòng)而移動(dòng),若直線l過(guò)點(diǎn)C,求
(1)直線l的解析式;
(2)求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形OABC的頂點(diǎn)A、C分別在x、y軸的正半抽上,點(diǎn)D是OA上的一點(diǎn),OC=OD=4,OA=6,點(diǎn)B的坐標(biāo)為(4,4).動(dòng)點(diǎn)E從點(diǎn)C出發(fā),以每秒個(gè)單位長(zhǎng)度的速度沿線段CD向點(diǎn)D運(yùn)動(dòng),過(guò)點(diǎn)E作BC的垂線EF交線段BC于點(diǎn)F,以線段EF為斜邊向右作等腰直角△EFG.設(shè)點(diǎn)E的運(yùn)動(dòng)時(shí)間為t秒(0≤t≤4).
(1)點(diǎn)G的坐標(biāo)為( , )(用含t的代數(shù)式表示)
(2)連接OE、BG,當(dāng)t為何值時(shí),以O、C、E為頂點(diǎn)的三角形與△BFG相似?
(3)設(shè)點(diǎn)E從點(diǎn)C出發(fā)時(shí),點(diǎn)E、F、G都與點(diǎn)C重合,點(diǎn)E在運(yùn)動(dòng)過(guò)程中,當(dāng)△ABG 的面積為時(shí),求點(diǎn)E運(yùn)動(dòng)的時(shí)間t的值,并直接寫(xiě)出點(diǎn)G從出發(fā)到此時(shí)所經(jīng)過(guò)的路徑長(zhǎng) (即線段AG的長(zhǎng)).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com