【題目】如圖,已知點AB、C、D的坐標分別為(-22),(一2,1),(3,1),(3,2),線段AD、AB、BC組成的圖形記作G,點P沿D-A-B-C移動,設點P移動的距離為a,直線ly=-x+b過點P,且在點P移動過程中,直線l隨點P移動而移動,若直線l過點C,求

1)直線l的解析式;

2)求a的值.

【答案】1y=-x+4;(2)當l過點C時,a的值為111

【解析】

1)將點D坐標代入y=-x+b,解出b,再代回即可得函數(shù)的解析式;
2l過點C,點P的位置有兩種:①點P位于點E時;②點P位于點C時;

1)當y=-x+b點C3,1)時,

1=-3+b

b=4

直線l的解析式為y=-x+4

2)∵點A,B,C,D的坐標分別為(-22),(-2,1),(3,1),(32).

AD=BC=5,AB=1,

∵直線l的解析式為y=-x+4

∴由lAD的交點E為(22

DE=1

∴①當l過點C時,點P位于點E時,a=DE=1

②當l過點C時,點P位于點C時,a=AD+AB+BC=5+1+5=11

∴當l過點C時,a的值為111

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】隨著人們經(jīng)濟收入的不斷提高,汽車已越來越多地進入到各個家庭.某大型超市為緩解停車難問題,建筑設計師提供了樓頂停車場的設計示意圖.按規(guī)定,停車場坡道口上坡要張貼限高標志,以便告知車輛能否安全駛?cè)耄鐖D,地面所在的直線ME與樓頂所在的直線AC是平行的,CD的厚度為0.5m,求出汽車通過坡道口的限高DF的長(結(jié)果精確到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形OABC中,點Ax軸上,點Cy軸上,點B的坐標是,將沿直線BD折疊,使得點C落在對角線OB上的點E處,折痕與OC交于點D

1)求直線OB的解析式及線段OE的長.

2)求直線BD的解析式及點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用小立方塊搭一幾何體,它的主視圖和俯視圖如圖所示,這個幾何體最少要a個立方塊,最多要b個立方塊.

1)求ab的值

2)若有理數(shù)x,y滿足,,且xy0,求x+y的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小剛和小強從兩地同時出發(fā),小剛騎自行車,小強步行,沿同一條路線相向勻速而行.出發(fā)后兩小時兩人相遇,相遇時小剛比小強多行進24千米.相遇后05小時小剛到達地.

1)兩人的行進速度分別是多少?

2)相遇后經(jīng)過多少時間小強到達地?

3兩地相距多少千米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC,BA=BC,AB為直徑的⊙O分別交AC、BC于點D、E,延長BC到點F,連接AF,使∠ABC=2CAF.

(1)求證:AF是⊙O的切線;

(2)若AC=4,CE:EB=1:3,求CE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是本地區(qū)一種產(chǎn)品30天的銷售圖象,圖1是產(chǎn)品日銷售量y(單位:件)與時間t(單位:天)的函數(shù)關(guān)系,圖2是一件產(chǎn)品的銷售利潤z(單位:元)與時間t(單位:天)的函數(shù)關(guān)系,已知日銷售利潤=日銷售量×一件產(chǎn)品的銷售利潤,下列結(jié)論錯誤的是( )

A. 24天的銷售量為200 B. 10天銷售一件產(chǎn)品的利潤是15

C. 12天與第30天這兩天的日銷售利潤相等 D. 30天的日銷售利潤是750

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學開展“唱紅歌”比賽活動,九年級(1)、(2)班根據(jù)初賽成績,各選出5名選手參加復賽,兩個班各選出的5名選手的復賽成績?nèi)鐖D所示.

班級

平均數(shù)(分)

中位數(shù)

眾數(shù)

九(1)

85

85

九(2)

80

(1)根據(jù)圖示填寫上表;

(2)結(jié)合兩班復賽成績的平均數(shù)和中位數(shù),分析哪個班級的復賽成績較好;

(3)計算兩班復賽成績的方差,并說明哪個班級的成績較穩(wěn)定.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】10如圖,已知ABC為等邊三角形,點D、E分別在BC、AC邊上,且AE=CD,AD與BE相交于點F。

1求證:ABE≌△CAD;2BFD的度數(shù)

查看答案和解析>>

同步練習冊答案