【題目】數(shù)學活動課上,某學習小組對有一內(nèi)角為120°的平行四邊形ABCD(∠BAD=120°)進行探究:將一塊含60°的直角三角板如圖放置在平行四邊形ABCD所在平面內(nèi)旋轉(zhuǎn),且60°角的頂點始終與點C重合,較短的直角邊和斜邊所在的兩直線分別交線段AB,AD于點E,F(xiàn)(不包括線段的端點).
(1)初步嘗試
如圖1,若AD=AB,求證:①△BCE≌△ACF,②AE+AF=AC;

(2)類比發(fā)現(xiàn)
如圖2,若AD=2AB,過點C作CH⊥AD于點H,求證:AE=2FH;

(3)深入探究
如圖3,若AD=3AB,探究得: 的值為常數(shù)t,則t=

【答案】
(1)證明:①∵四邊形ABCD是平行四邊形,∠BAD=120°,

∴∠D=∠B=60°,

∵AD=AB,

∴△ABC,△ACD都是等邊三角形,

∴∠B=∠CAD=60°,∠ACB=60°,BC=AC,

∵∠ECF=60°,

∴∠BCE+∠ACE=∠ACF+∠ACE=60°,

∴∠BCE=∠ACF,

在△BCE和△ACF中,

∴△BCE≌△ACF.

②∵△BCE≌△ACF,

∴BE=AF,

∴AE+AF=AE+BE=AB=AC.


(2)證明:設(shè)DH=x,由題意,CD=2x,CH= x,

∴AD=2AB=4x,

∴AH=AD﹣DH=3x,

∵CH⊥AD,

∴AC= =2 x,

∴AC2+CD2=AD2,

∴∠ACD=90°,

∴∠BAC=∠ACD=90°,

∴∠CAD=30°,

∴∠ACH=60°,

∵∠ECF=60°,

∴∠HCF=∠ACE,

∴△ACE∽△HCF,

= =2,

∴AE=2FH.


(3)
【解析】解; (3)如圖3中,作CN⊥AD于N,CM⊥BA于M,CM與AD交于點H.

∵∠ECF+∠EAF=180°,

∴∠AEC+∠AFC=180°,

∵∠AFC+∠CFN=180°,

∴∠CFN=∠AEC,∵∠M=∠CNF=90°,

∴△CFN∽△CEM,

= ,

∵ABCM=ADCN,AD=3AB,

∴CM=3CN,

= = ,設(shè)CN=a,F(xiàn)N=b,則CM=3a,EM=3b,

∵∠MAH=60°,∠M=90°,

∴∠AHM=∠CHN=30°,

∴HC=2a,HM=a,HN= a,

∴AM= a,AH= a,

∴AC= = a,

AE+3AF=(EM﹣AM)+3(AH+HN﹣FN)=EM﹣AM+3AH+3HN﹣3FN=3AH+3HN﹣AM= a,

= =

故答案為

(1)①先證明△ABC,△ACD都是等邊三角形,再證明∠BCE=∠ACF即可解決問題.②根據(jù)①的結(jié)論得到BE=AF,由此即可證明.(2)設(shè)DH=x,由題意,CD=2x,CH= x,由△ACE∽△HCF,得 = 由此即可證明.(3)如圖3中,作CN⊥AD于N,CM⊥BA于M,CM與AD交于點H.先證明△CFN∽△CEM,得 = ,由ABCM=ADCN,AD=3AB,推出CM=3CN,所以 = = ,設(shè)CN=a,F(xiàn)N=b,則CM=3a,EM=3b,想辦法求出AC,AE+3AF即可解決問題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,ABAC,∠A=108°.

1)實踐與操作:作AB的垂直平分線DE,與AB,BC分別交于點DE(用尺規(guī)作圖.保留作圖痕跡,不要求寫作法)

2)推理與計算:求∠AEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A,B的坐標分別為(﹣1,0),(3,0),現(xiàn)同時將點A,B分別向上平移2個單位,再向右平移1個單位,分別得到對應(yīng)點CD,連接ACBD

1)求出點C,D的坐標;

2)設(shè)y軸上一點P0,m),m為整數(shù),使關(guān)于x,y的二元一次方程組有正整數(shù)解,求點P的坐標;

3)在(2)的條件下,若Q點在線段CD上,橫坐標為n,PBQ的面積SPBQ的值不小于0.6且不大于4,求n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2008年北京奧運會后,同學們參與體育鍛煉的熱情高漲.為了解他們平均每周的鍛煉時間,小明同學在校內(nèi)隨機調(diào)查了50名同學,統(tǒng)計并制作了如下的頻數(shù)分布表和扇形統(tǒng)計圖.根據(jù)上述信息解答下列問題:

(1)m= , n=
(2)在扇形統(tǒng)計圖中,D組所占圓心角的度數(shù)為度;
(3)全校共有3000名學生,估計該校平均每周體育鍛煉時間不少于6小時的學生約有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】幾何證明:

1)已知:如圖1,BD、CE分別是△ABC的外角平分線,過點AAFBD,AGCE,垂足分別是F、G,連接FG,延長AF、AG,與直線BC相交.求證:FGAB+BC+AC).

2)若BD、CE分別是△ABC的內(nèi)角平分線,其余條件不變(如圖1),線段FG與△ABC的三邊又有怎樣的數(shù)量關(guān)系?寫出你的猜想,并給予證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=AC,BDAC于D,CEAB于E,BD、CE相交于F.

求證:AF平分∠BAC.

【答案】證明見解析.

【解析】試題分析:先根據(jù)AB=AC,可得∠ABC=ACB,再由垂直,可得90°的角,在BCEBCD中,利用內(nèi)角和為180°,可分別求∠BCE和∠DBC,利用等量減等量差相等,可得FB=FC再易證ABF≌△ACF,從而證出AF平分∠BAC

試題解析:證明:∵AB=AC(已知),

∴∠ABC=ACB(等邊對等角).

BDCE分別是高,

BDAC,CEAB(高的定義).

∴∠CEB=BDC=90°.

∴∠ECB=90°ABC,DBC=90°ACB.

∴∠ECB=DBC(等量代換).

FB=FC(等角對等邊)

ABFACF中,

ABFACF(SSS),

∴∠BAF=CAF(全等三角形對應(yīng)角相等)

AF平分∠BAC.

型】解答
結(jié)束】
23

【題目】如圖,在△ABC中,AC=BC,∠C=90°,AD△ABC的角平分線,DE⊥AB,垂足為E

1)求證:CD=BE;

2)已知CD=2,求AC的長;

3)求證:AB=AC+CD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線L:y=﹣ (x+t)(x﹣t+4)與x軸只有一個交點,則拋物線L與x軸的交點坐標是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果關(guān)于x的一元二次方程ax2+bx+c=0有兩個實數(shù)根,且其中一個根為另一個根的2倍,則稱這樣的方程為“倍根方程”,以下關(guān)于“倍根方程”的說法:①方程x2-3x+2=0是“倍根方程”;②若(x-2)(mx+n)=0是“倍根方程”,則4m2+5mn+n2=0;③若pq=2,則關(guān)于x的方程px2+3x+q=0是“倍根方程”;④若方程ax2+bx+c=0是“倍根方程”,且5a+b=0,則方程ax2+bx+c=0的一個根為.其中正確的是____(填序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB<BC.

(1)利用尺規(guī)作圖,在AD邊上確定點E,使點E到邊AB,BC的距離相等(不寫作法,保留作圖痕跡);
(2)若BC=8,CD=5,則DE=

查看答案和解析>>

同步練習冊答案