【題目】如圖,在一次數(shù)學(xué)活動(dòng)課上,張明用17個(gè)邊長(zhǎng)為1的小正方形搭成了一個(gè)幾何體,然后他請(qǐng)王亮用其他同樣的小正方體在旁邊再搭一個(gè)幾何體,使王亮所搭幾何體恰好可以和張明所搭幾何體拼成一個(gè)無縫隙的大長(zhǎng)方體(不改變張明所搭幾何體的形狀),那么王亮至少還需要 個(gè)小立方體,王亮所搭幾何體的表面積為

【答案】19,48

【解析】試題分析:首先確定張明所搭幾何體所需的正方體的個(gè)數(shù),然后確定兩人共搭建幾何體所需小立方體的數(shù)量,求差即可.

解:王亮所搭幾何體恰好可以和張明所搭幾何體拼成一個(gè)無縫隙的大長(zhǎng)方體,

該長(zhǎng)方體需要小立方體4×32=36個(gè),

張明用17個(gè)邊長(zhǎng)為1的小正方形搭成了一個(gè)幾何體,

王亮至少還需36﹣17=19個(gè)小立方體,

表面積為:9+7+8=48,

故答案為19,48

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線C1:y=a1x2+b1x+c1和C2:y=a2x2+b2x+c2都經(jīng)過原點(diǎn),頂點(diǎn)分別為A,B,與x軸的另一個(gè)交點(diǎn)分別為M、N,如果點(diǎn)A與點(diǎn)B,點(diǎn)M與點(diǎn)N都關(guān)于原點(diǎn)O成中心對(duì)稱,則拋物線C1和C2為姐妹拋物線,請(qǐng)你寫出一對(duì)姐妹拋物線C1和C2,使四邊形ANBM恰好是矩形,你所寫的一對(duì)拋物線解析式是_______________________和_________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】x0y0,且|x||y|,則xy一定是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直角坐標(biāo)系內(nèi)點(diǎn)P(﹣2,3)關(guān)于x軸的對(duì)稱點(diǎn)Q的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)廣場(chǎng)上有旗桿如圖1所示,在學(xué)習(xí)解直角三角形以后,數(shù)學(xué)興趣小組測(cè)量了旗桿的高度.如圖2,某一時(shí)刻,旗桿AB的影子一部分落在平臺(tái)上,另一部分落在斜坡上,測(cè)得落在平臺(tái)上的影長(zhǎng)BC4米,落在斜坡上的影長(zhǎng)CD3米,ABBC,同一時(shí)刻,光線與水平面的夾角為72°,1米的豎立標(biāo)桿PQ在斜坡上的影長(zhǎng)QR2米,求旗桿的高度(結(jié)果精確到0.1米).(參考數(shù)據(jù):sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠1和∠2互補(bǔ),∠2和∠3互補(bǔ).若∠140°,則∠3________°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)正多邊形的每一個(gè)外角都等于30°,則這個(gè)多邊形的邊數(shù)是( )

A. 6 B. 8 C. 9 D. 12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若(x﹣1)2=2,則代數(shù)式2x2﹣4x+5的值為( )
A.11
B.6
C.7
D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD的邊長(zhǎng)為6cm,點(diǎn)E,M分別是線段BD,AD上的動(dòng)點(diǎn),連接AE并延長(zhǎng),交邊BCF,過MMNAF,垂足為H,交邊AB于點(diǎn)N.

(1)如圖①,若點(diǎn)M與點(diǎn)D重合,求證:AFMN;

(2)如圖②,若點(diǎn)M從點(diǎn)D出發(fā),以1cm/s的速度沿DA向點(diǎn)A運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)B出發(fā),以cm/s的速度沿BD向點(diǎn)D運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為ts.

①設(shè)BFycm,求y關(guān)于t的函數(shù)表達(dá)式;

②當(dāng)BN2AN時(shí),連接FN,求FN的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案