已知直線y=x﹣3與x軸交于點(diǎn)A,與y軸交于點(diǎn)C,拋物線y=﹣x2+mx+n經(jīng)過(guò)點(diǎn)A和點(diǎn)C.
(1)求此拋物線的解析式;
(2)在直線CA上方的拋物線上是否存在點(diǎn)D,使得△ACD的面積最大?若存在,求出點(diǎn)D的坐標(biāo);若不存在,說(shuō)明理由.

(1)y=﹣x2+x﹣3;(2)存在,D點(diǎn)坐標(biāo)為(2,

解析試題分析:(1)由直線的解析式y(tǒng)=x﹣3,可先求出與坐標(biāo)軸的交點(diǎn)坐標(biāo)C點(diǎn)坐標(biāo)為(0,﹣3),A點(diǎn)坐標(biāo)為(4,0),然后把A點(diǎn)和C點(diǎn)坐標(biāo)代入y=﹣x2+mx+n中得到關(guān)于m、n的方程組,解方程組求出m、n即可得到拋物線的解析式;
(2)過(guò)D點(diǎn)作直線AC的平行線y=kx+b,要使△ACD的面積最大,則直線y=kx+b與拋物線只有一個(gè)公共點(diǎn),點(diǎn)D到AC的距離最大,根據(jù)兩直線平行問(wèn)題得到k= ,過(guò)點(diǎn)D的直線解析式為y= x+b,然后把它與拋物線解析式組成方程組,利用方程組只有一組解和判別式的意義確定b的值,再得到方程組的解,從而得到D點(diǎn)坐標(biāo).
試題解析:(1)把x=0代入y=x﹣3得y=﹣3,則C點(diǎn)坐標(biāo)為(0,﹣3),
把y=0代入y=x﹣3得x﹣3=0,解得x=4,則A點(diǎn)坐標(biāo)為(4,0),
把A(4,0),C(0,﹣3)代入y=﹣x2+mx+n得,
解得
所以二次函數(shù)解析式為y=﹣x2+x﹣3;
(2)存在.
過(guò)D點(diǎn)作直線AC的平行線y=kx+b,當(dāng)直線y=kx+b與拋物線只有一個(gè)公共點(diǎn)時(shí),點(diǎn)D到AC的距離最大,此時(shí)△ACD的面積最大,
∵直線AC的解析式為y=x﹣3,
∴k=,即y=x+b,
由直線y=x+b和拋物線y=﹣x2+x﹣3組成方程組得,消去y得到3x2﹣12x+4b+12=0,
∴△=122﹣4×3×(4b+12)=0,解得b=0,
∴3x2﹣12x+12=0,解得x1=x2=2,
把x=2,b=0代入y=x+b得y=,
∴D點(diǎn)坐標(biāo)為(2,).
考點(diǎn):1.待定系數(shù)法求二次函數(shù)解析式;2.二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

如圖,拋物線與x軸正半軸交于點(diǎn)A(3,0).以O(shè)A為邊在x軸上方作正方形OABC,延長(zhǎng)CB交拋物線于點(diǎn)D,再以BD為邊向上作正方形BDEF,.則a=    ,點(diǎn)E的坐標(biāo)是         .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

崇左市政府大樓前廣場(chǎng)有一噴水池,水從地面噴出,噴出水的路徑是一條拋物線.如果以水平地面為x軸,建立如圖所示的平面直角坐標(biāo)系,水在空中劃出的曲線是拋物線y=﹣x2+4x(單位:米)的一部分.則水噴出的最大高度是   千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

拋物線先向右平移1個(gè)單位,再向上平移3個(gè)單位,得到新的拋物線解析式是       

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

用長(zhǎng)為32米的籬笆圍一個(gè)矩形養(yǎng)雞場(chǎng),設(shè)圍成的矩形一邊長(zhǎng)為x米,面積為y平方米.
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)x為何值時(shí),圍成的養(yǎng)雞場(chǎng)面積為60平方米?
(3)能否圍成面積為70平方米的養(yǎng)雞場(chǎng)?如果能,請(qǐng)求出其邊長(zhǎng);如果不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知拋物線與x軸交于A,B兩點(diǎn),對(duì)稱軸為直線,直線AD交拋物線于點(diǎn)D(2,3).

(1)求拋物線的解析式;
(2)已知點(diǎn)M為第三象限內(nèi)拋物線上的一動(dòng)點(diǎn),當(dāng)點(diǎn)M在什么位置時(shí)四邊形AMCO的面積最大?并求出最大值;
(3)當(dāng)四邊形AMCO面積最大時(shí),過(guò)點(diǎn)M作直線平行于y軸,在這條直線上是否存在一個(gè)以Q點(diǎn)為圓心,OQ為半徑且與直線BC相切的圓?若存在,求出圓心Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知拋物線圖象經(jīng)過(guò)A(-1,0),B(4,0)兩點(diǎn).
(1)求拋物線的解析式;
(2)若C(m,m-1)是拋物線上位于第一象限內(nèi)的點(diǎn),D是線段AB上的一個(gè)動(dòng)點(diǎn)(不與A、B重合),過(guò)點(diǎn)D分別作DE∥BC交AC于E,DF∥AC交BC于F.
①求證:四邊形DECF是矩形;
②連結(jié)EF,線段EF的長(zhǎng)是否存在最小值?若存在,求出EF的最小值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系xOy中(O為坐標(biāo)原點(diǎn)),已知拋物線y=x2+bx+c過(guò)點(diǎn)A(4,0),B(1,﹣3).
(1)求b,c的值,并寫出該拋物線的對(duì)稱軸和頂點(diǎn)坐標(biāo);
(2)設(shè)拋物線的對(duì)稱軸為直線l,點(diǎn)P(m,n)是拋物線上在第一象限的點(diǎn),點(diǎn)E與點(diǎn)P關(guān)于直線l對(duì)稱,點(diǎn)E與點(diǎn)F關(guān)于y軸對(duì)稱,若四邊形OAPF的面積為48,求點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,設(shè)M是直線l上任意一點(diǎn),試判斷MP+MA是否存在最小值?若存在,求出這個(gè)最小值及相應(yīng)的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系中,拋物線經(jīng)過(guò)點(diǎn)(0,),(3,4).
(1)求拋物線的表達(dá)式及對(duì)稱軸;
(2)設(shè)點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,點(diǎn)是拋物線對(duì)稱軸上一動(dòng)點(diǎn),記拋物線在之間的部分為圖象(包含,兩點(diǎn)).若直線與圖象有公共點(diǎn),結(jié)合函數(shù)圖像,求點(diǎn)縱坐標(biāo)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案