【題目】如圖,點A,B的坐標分別為(1,4)和(4,4),拋物線y=a(x-m)2+n的頂點在線段AB上運動,與x軸交于C、D兩點(CD的左側(cè)),點C的橫坐標最小值為-3,則點D的橫坐標最大值為______

【答案】8

【解析】

當拋物線y=ax-m2+n的頂點在線段ABA點上時,點C的橫坐標最小把A的坐標代入即可求出a的值,因為拋物線y=ax-m2+n的頂點在線段AB上運動,所以拋物線的a永遠等于-,根據(jù)題意可知當拋物線的頂點運動到B時,D的橫坐標最大,把B的坐標和a的值代入即可求出二次函數(shù)的解析式,再求出y=0x的值即可求出答案.

解:當拋物線y=ax-m2+n的頂點在線段ABA點上時,點C的橫坐標最小,

A14)代入得:y=ax-12+4,

C-3,0)代入得:0=a-3-12+4,

解得:a=-,

即:y=-x-12+4,

拋物線y=ax-m2+n的頂點在線段AB上運動,

拋物線的a永遠等于-

當拋物線的頂點運動到B時,D的橫坐標最大,把a=-B4,4)代入y=ax-m2+n得:

y=-x-42+4

y=0時,0=-x-42+4,

解得:x1=0,x2=8

∵CD的左側(cè),

D的橫坐標最大值是8

故答案為:8

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象的一部分,對稱軸是直線x=1.

b24ac;

4a﹣2b+c<0;

不等式ax2+bx+c>0的解集是x≥3.5;

若(﹣2,y1),(5,y2)是拋物線上的兩點,則y1<y2

上述4個判斷中,正確的是( 。

A.①② B①④ C①③④ D②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】9分)如圖所示,某數(shù)學活動小組選定測量小河對岸大樹BC的高度,他們在斜坡上D處測得大樹頂端B的仰角是30,朝大樹方向下坡走6米到達坡底A處,在A處測得大樹頂端B的仰角是48°. 若坡角∠FAE=30°,求大樹的高度. (結(jié)果保留整數(shù),參考數(shù)據(jù):sin48°≈0.74,cos48°≈0.67,tan48°≈1.11≈1.73

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系上有點A(1,0),點A第一次跳動至點,第二次點跳動至點第三次點跳動至點,第四次點跳動至點……,依此規(guī)律跳動下去,則點與點之間的距離是(

A. 2017B. 2018C. 2019D. 2020

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,它與x軸的兩個交點分別為(-1,0),(3,0).對于下列命題:①b-2a=0;abc<0;4a-2b+c<0.其中正確的有( 。

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=1,A=45°,邊長為1的正方形的一個頂點D在邊AC上,與△ABC另兩邊分別交于點E、F,DEAB,將正方形平移,使點D保持在AC上(D不與A重合),設AF=x,正方形與△ABC重疊部分的面積為y.

(1)yx的函數(shù)關(guān)系式并寫出自變量x的取值范圍;

(2)x為何值時y的值最大?

(3)x在哪個范圍取值時y的值隨x的增大而減?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】△ABC中,∠BAC=90°,AB=AC,點D為直線BC上一動點(點D不與B,C重合),以AD為邊在AD右側(cè)作正方形ADEF,連接CF.

(1)觀察猜想

如圖1,當點D在線段BC上時,

①BC與CF的位置關(guān)系為:   

②BC,CD,CF之間的數(shù)量關(guān)系為:   ;(將結(jié)論直接寫在橫線上)

(2)數(shù)學思考

如圖2,當點D在線段CB的延長線上時,結(jié)論①,②是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結(jié)論再給予證明.

(3)拓展延伸

如圖3,當點D在線段BC的延長線上時,延長BA交CF于點G,連接GE.若已知AB=2,CD=BC,請求出GE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,菱形ABCD中,點E,F(xiàn),G,H分別在邊AB,BC,CD,DA上,且BE=BF=DH=DG.

(1)求證:四邊形EFGH是矩形;

(2)已知∠B=60°,AB=6.

請從A,B兩題中任選一題作答,我選擇   題.

A題:當點EAB的中點時,矩形EFGH的面積是   

B題:當BE=   時,矩形EFGH的面積是8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O是正△ABC內(nèi)一點,OA=3OB=4,OC=5,將線段BO以點B為旋轉(zhuǎn)中心逆時針旋轉(zhuǎn)60°得到線段BO′,下列結(jié)論:①△BO′A可以由△BOC繞點B逆時針旋轉(zhuǎn)60°得到;OO′的距離為4;③∠AOB=150°;④S四邊形AOBO;⑤SAOC+SAOB=.其中正確的結(jié)論是( 。

A.①②③⑤B.①②③④C.①②③④⑤D.①②③

查看答案和解析>>

同步練習冊答案