【題目】如圖,矩形紙片ABCD中,AB=4BC=10,GBC邊上一點(diǎn),沿AG折疊△ABG,點(diǎn)B的落點(diǎn)為PGPAD于點(diǎn)E. EAD的中點(diǎn),則BG的長是_______.

【答案】8

【解析】

根據(jù)矩形的性質(zhì)得到ADBC,由折疊的性質(zhì)得到△ABG≌△APG,進(jìn)而得到△AEG為等腰三角形,則BG=PG=PE+EG=PE+AE,由勾股定理可求得PE長,即可得出答案.

∵四邊形ABCD為矩形,

ADBC,

∴∠EAG=AGB

由折疊性質(zhì)可得△ABG≌△APG,

∴∠AGB=AGP,

∴∠EAG=AGP,即△AEG為等腰三角形,

AE=EG

AB=4,BC=10,E為AD中點(diǎn),

∴AP=4,AE=5,

∴PE=3,

∴BG=PG= PE+EG=PE+AE=8,

故答案為:8.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直線上方有一個(gè)正方形,,以點(diǎn)為圓心,為半徑作弧,與交于點(diǎn),分別以點(diǎn)為圓心,長為半徑作弧,兩弧交于點(diǎn),連結(jié),則的度數(shù)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小華為了測(cè)量樓房AB的高度,他從樓底的B處沿著斜坡向上行走20m,到達(dá)坡頂D處.已知斜坡的坡角為15°.小華的身高ED1.6m,他站在坡頂看樓頂A處的仰角為45°,求樓房AB的高度.(計(jì)算結(jié)果精確到1m)(參考數(shù)據(jù):sin15°,cos15°,tan15°)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦ACBD交于點(diǎn)E,且ACBD,連接AD,BC

1)求證:ADB≌△BCA;

2)若ODACAB4,求弦AC的長;

3)在(2)的條件下,延長AB至點(diǎn)P,使BP2,連接PC.求證:PC是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O是ABC的外接圓,BC為O的直徑,點(diǎn)E為ABC的內(nèi)心,連接AE并延長交O于D點(diǎn),連接BD并延長至F,使得BD=DF,連接CF、BE.

(1)求證:DB=DE;

(2)求證:直線CF為O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某旅游景區(qū)為方便游客,修建了一條東西走向的棧道AB,棧道AB與景區(qū)道路CD平行.在C處測(cè)得棧道一端A位于北偏西45°方向,在D處測(cè)得棧道另一端B位于北偏東32°方向.已知AC60 m CD46 m,求棧道AB的長(結(jié)果保留整數(shù)).參考數(shù)據(jù):sin32° ≈ 0.53cos32° ≈ 0.85,tan32° ≈ 0.62,≈ 1.414.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校為了解全校學(xué)生參加社會(huì)實(shí)踐活動(dòng)情況,隨機(jī)調(diào)查了部分學(xué)生一學(xué)期參加社會(huì)實(shí)踐活動(dòng)的時(shí)間(單位:天),并用得到的數(shù)據(jù)繪制了統(tǒng)計(jì)圖(1)和圖 2. 請(qǐng)根據(jù)圖中提供的信息,回答下列問題:

1 本次隨機(jī)調(diào)查的學(xué)生人數(shù)是_______,圖(1)中m的值是_______;

2)求調(diào)查獲取的學(xué)生社會(huì)實(shí)踐活動(dòng)時(shí)間樣本數(shù)據(jù)的眾數(shù)、中位數(shù)和平均數(shù);

3)該校有480名學(xué)生,根據(jù)獲取的社會(huì)實(shí)踐活動(dòng)時(shí)間樣本數(shù)據(jù),估計(jì)該校一學(xué)期社會(huì)實(shí)踐活動(dòng)時(shí)間大于10 天的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小華和小康想用標(biāo)桿來測(cè)量河對(duì)岸的樹AB的高,兩人在確保無安全隱患的情況下,小康在F處豎立了一根標(biāo)桿EF,小華走到C處時(shí),站立在C處看到標(biāo)桿頂端E和樹的頂端B在一條直線上,此時(shí)測(cè)得小華的眼睛到地面的距離DC16米;然后,小華在C處蹲下,小康平移標(biāo)桿到H處時(shí),小華恰好看到標(biāo)桿頂端G和樹的頂端B在一條直線上,此時(shí)測(cè)得小華的眼睛到地面的距離MC0.8米.已知EFGH2.4米,CF2米,FH1.6米,點(diǎn)C、F、H、A在一條直線上,點(diǎn)MCD上,CDAC,EFAC,CHACABAC,根據(jù)以上測(cè)量過程及測(cè)量數(shù)據(jù),請(qǐng)你求出樹AB的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知邊長為2的等邊三角形ABC中,分別以點(diǎn)A,C為圓心,m為半徑作弧,兩弧交于點(diǎn)D,連結(jié)BD.若BD的長為2,則m的值為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案