【題目】如圖,在平面直角坐標系中,矩形OCDE的三個頂點分別是C(3,0),D(3,4),E(0,4).點A在DE上,以A為頂點的拋物線過點C,且對稱軸x=1交x軸于點B.連接EC,AC.點P,Q為動點,設運動時間為t秒.
(1)填空:點A坐標為;拋物線的解析式為 .
(2)在圖①中,若點P在線段OC上從點O向點C以1個單位/秒的速度運動,同時,點Q在線段CE上從點C向點E以2個單位/秒的速度運動,當一個點到達終點時,另一個點隨之停止運動.當t為何值時,△PCQ為直角三角形?
(3)在圖②中,若點P在對稱軸上從點A開始向點B以1個單位/秒的速度運動,過點P做PF⊥AB,交AC于點F,過點F作FG⊥AD于點G,交拋物線于點Q,連接AQ,CQ.當t為何值時,△ACQ的面積最大?最大值是多少?
【答案】
(1)解:(1,4);y=﹣x2+2x+3
(2)解:依題意有:OC=3,OE=4,
∴CE= = =5,
當∠QPC=90°時,
∵cos∠QCP= = ,
∴ = ,
解得t= ;
當∠PQC=90°時,
∵cos∠QCP= = ,
∴ = ,
解得t= .
∴當t= 或t= 時,△PCQ為直角三角形
(3)解:∵A(1,4),C(3,0),
設直線AC的解析式為y=kx+b,則
,
解得 .
故直線AC的解析式為y=﹣2x+6.
∵P(1,4﹣t),將y=4﹣t代入y=﹣2x+6中,得x=1+ ,
∴Q點的橫坐標為1+ ,
將x=1+ 代入y=﹣(x﹣1)2+4中,得y=4﹣ .
∴Q點的縱坐標為4﹣ ,
∴QF=(4﹣ )﹣(4﹣t)=t﹣ ,
∴S△ACQ=S△AFQ+S△CFQ
= FQAG+ FQDG
= FQ(AG+DG)
= FQAD
= ×2(t﹣ )
=﹣ +t
=﹣ (t2+4﹣4t﹣4)
=﹣ (t﹣2)2+1,
∴當t=2時,△ACQ的面積最大,最大值是1
【解析】解:(1)∵拋物線的對稱軸為x=1,矩形OCDE的三個頂點分別是C(3,0),D(3,4),E(0,4),點A在DE上, ∴點A坐標為(1,4),
設拋物線的解析式為y=a(x﹣1)2+4,
把C(3,0)代入拋物線的解析式,可得a(3﹣1)2+4=0,
解得a=﹣1.
故拋物線的解析式為y=﹣(x﹣1)2+4,即y=﹣x2+2x+3;
(1)根據拋物線的對稱軸與矩形的性質可得點A坐標,根據待定系數(shù)法可得拋物線的解析式;(2)先根據勾股定理可得CE,再分兩種情況:當∠QPC=90°時;當∠PQC=90°時;討論可得△PCQ為直角三角形時t的值;(3)根據待定系數(shù)法可得直線AC的解析式,根據S△ACQ=S△AFQ+S△CPQ可得S△ACQ=﹣ (t﹣2)2+1,依此即可求解.
科目:初中數(shù)學 來源: 題型:
【題目】為了解中學生的體能情況,某校抽取了50名八年級學生進行一分鐘跳繩次數(shù)測試,將所得數(shù)據整理后,畫出了頻數(shù)分布直方圖如下圖所示已知圖中從左到右前第一、第二、第三、第五小組的頻率分別為0.04 , 0.12 ,0.4 ,O.28 ,根據已知條件解答下列問題:
(1)第四個小組的頻率是多少? 你是怎樣得到的?
(2)這五小組的頻數(shù)各是多少?
(3)在這次跳繩中,跳繩次數(shù)的中位數(shù)落在第幾小組內?
(4)將頻數(shù)分布直方圖補全,并分別寫出各個小組的頻數(shù),并畫出頻數(shù)分布折線圖.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某自行車廠一周計劃生產1400輛自行車,平均每天生產200輛,由于各種原因實際每天生產量與計劃量相比有出入表是某周的生產情況超產為正、減產為負:
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增減 |
根據記錄可知前三天共生產多少輛;
產量最多的一天比產量最少的一天多生產多少輛;
該廠實行每周計件工資制,每生產一輛車可得60元,若超額完成任務,則超過部分每輛另獎15元;少生產一輛扣15元,那么該廠工人這一周的工資總額是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(b>a>0)與x軸最多有一個交點,現(xiàn)有以下四個結論:
①該拋物線的對稱軸在y軸左側;
②關于x的方程ax2+bx+c+2=0無實數(shù)根;
③a﹣b+c≥0;
④ 的最小值為3.
其中,正確結論的個數(shù)為( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點D在反比例函數(shù)y= 的圖象上,過點D作x軸的平行線交y軸于點B(0,3).過點A(5,0)的直線y=kx+b與y軸于點C,且BD=OC,tan∠OAC= .
(1)求反比例函數(shù)y= 和直線y=kx+b的解析式;
(2)連接CD,試判斷線段AC與線段CD的關系,并說明理由;
(3)點E為x軸上點A右側的一點,且AE=OC,連接BE交直線CA與點M,求∠BMC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩站相距240千米,從甲站開出一列慢車,速度為每小時80千米,從乙站開出一列快車,速度為每小時120千米.
(1)若兩車同時開出,背向而行,則經過多長時間兩車相距540千米?
(2)若兩車同時開出,同向而行(快車在后),則經過多長時間快車可追上慢車?
(3)若兩車同時開出,同向而行(慢車在后),則經過多長時間兩車相距300千米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若一個正整數(shù)能表示為兩個正整數(shù)的平方差,則稱這個正整數(shù)為“智慧數(shù)”(如3=22-12,16=52-32,則3和16是智慧數(shù)).已知按從小到大的順序構成如下數(shù)列:3,5,7,8,9,11,12,13,15,16,17,19,20,21,23,24,25,…則第2 013個“智慧數(shù)”是______.
【答案】2 687
【解析】解析:觀察數(shù)的變化規(guī)律,可知全部“智慧數(shù)”從小到大可按每三個數(shù)分一組,從第2組開始每組的第一個數(shù)都是4的倍數(shù),歸納可得,第n組的第一個數(shù)為4n(n≥2).因為2 013÷3=671,所以第2 013個“智慧數(shù)”是第671組中的第3個數(shù),即為4×671+3=2 687.
點睛:找規(guī)律題需要記憶常見數(shù)列
1,2,3,4……n
1,3,5,7……2n-1
2,4,6,8……2n
2,4,8,16,32……
1,4,9,16,25……
2,6,12,20……n(n+1)
一般題目中的數(shù)列是利用常見數(shù)列變形而來,其中后一項比前一項多一個常數(shù),是等差數(shù)列,列舉找規(guī)律.后一項是前一項的固定倍數(shù),則是等比數(shù)列,列舉找規(guī)律.
【題型】填空題
【結束】
19
【題目】如圖,鄭某把一塊邊長為a m的正方形的土地租給李某種植,他對李某說:“我把你這塊地的一邊減少5 m,另一邊增加5 m,繼續(xù)租給你,你也沒有吃虧,你看如何”.李某一聽,覺得自己好像沒有吃虧,就答應了.同學們,你們覺得李某有沒有吃虧?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算:(1)992-102×98;
(2)[x(x2y2-xy)-y(x2-x3y)]÷x2y.
【答案】(1)-195(2)2xy-2
【解析】試題分析:(1)利用平方差公式,完全平方公式簡便計算.
(2)提取公因式,化簡.
試題解析:
(1)原式=(100-1)2-(100+2)×(100-2)
=(1002-200+1)-(1002-4)=-200+5=-195.
(2)原式=[x2y(xy-1)-x2y(1-xy)]÷x2y
=2x2y(xy-1)÷x2y=2(xy-1)=2xy-2.
【題型】解答題
【結束】
21
【題目】(1)先化簡,再求值:a(a-2b)+(a+b)2,其中a=-1,b=;
(2)若x2-5x=3,求(x-1)(2x-1)-(x+1)2+1的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB∥CD,E 是直線 CD 上的一點,且 ∠BAE=30°, 是直線 CD 上的一動點,M是 AP 的中點,直線 MN⊥AP 且與 CD 交于點 N,設 ∠BAP=X°,∠MNE=Y°.
(1)在圖2 中,當 x=12 時,∠MNE= ;在圖 3 中,當 x=50 時,∠MNE= ;
(2)研究表明:y與x之間關系的圖象如圖4所示( 不存在時,用空心點表示),請你根據圖象直接估計當 y=100 時,x= ;
(3)探究:當 x= 時,點 N 與點 E 重合;
(4)探究:當 x>105 時,求y與x之間的關系式.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com