【題目】隨著“低碳生活,綠色出行”理念的普及,新能源汽車正逐漸成為人們喜愛的交通工具.某汽車銷售公司計(jì)劃購進(jìn)一批新能源汽車嘗試進(jìn)行銷售,據(jù)了解2輛A型汽車、3輛B型汽氣車的進(jìn)價(jià)共計(jì)80萬元;3輛A型汽車、2輛B型汽車的進(jìn)價(jià)共計(jì)95萬元.
(1)求A、B兩種型號(hào)的汽車每輛進(jìn)價(jià)分別為多少方元?
(2)若該公司計(jì)劃正好用200萬元購進(jìn)以上兩種型號(hào)的新能源汽車(兩種型號(hào)的汽車均購買),請你幫助該公司設(shè)計(jì)購買方案
【答案】(1)A種型號(hào)的汽車每輛25萬元,B種型號(hào)的汽車每輛10萬元;(2)有三種購買方案:第一種方案:購買A型號(hào)的汽車2輛,B型號(hào)的汽車15輛;第二種方案:購買A型號(hào)的汽車4輛,B型號(hào)的汽車10輛;第三種方案:購買A型號(hào)的汽車6輛,B型號(hào)的汽車5輛.
【解析】
(1)設(shè)A型汽車每輛的進(jìn)價(jià)為x萬元,B型汽車每輛的進(jìn)價(jià)為y萬元,根據(jù)“2輛A型汽車、3輛B型汽車的進(jìn)價(jià)共計(jì)80萬元;3輛A型汽車、2輛B型汽車的進(jìn)價(jià)共計(jì)95萬元”,即可得出關(guān)于x,y的二元一次方程組,解之即可得出結(jié)論;
(2)設(shè)購進(jìn)A型汽車m輛,購進(jìn)B型汽車n輛,根據(jù)總價(jià)=單價(jià)×數(shù)量,即可得出關(guān)于m,n的二元一次方程,結(jié)合m,n均為正整數(shù),即可得出結(jié)論;
解:(1)設(shè)A種型號(hào)的汽車每輛x萬元,B種型號(hào)的汽車每輛y萬元,由題意得:
,
解得.
答:A種型號(hào)的汽車每輛進(jìn)價(jià)為25萬元,B種型號(hào)的汽車每輛進(jìn)價(jià)為10萬元;
(2)設(shè)購進(jìn)A型汽車m輛,購進(jìn)B型汽車n輛,由題意得:
,
解得:,
∵m,n均為正整數(shù),
∴或或,
因此,共有三種購買方案:
第一種方案:購買A型號(hào)的汽車2輛,B型號(hào)的汽車15輛;
第二種方案:購買A型號(hào)的汽車4輛,B型號(hào)的汽車10輛;
第三種方案:購買A型號(hào)的汽車6輛,B型號(hào)的汽車5輛.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=8,AD=6,E為AB邊上一點(diǎn),將△BEC沿CE翻折,點(diǎn)B落在點(diǎn)F處,當(dāng)△AEF為直角三角形時(shí),BE=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,CD與⊙O相切于C,BE∥CO.
(1)求證:BC是∠ABE的平分線;
(2)若DC=8,⊙O的半徑OA=6,求CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A、B兩地之間為直線距離且相距600千米,甲開車從A地出發(fā)前往B地,乙騎自行車從B地出發(fā)前往A地,已知乙比甲晚出發(fā)1小時(shí),兩車均勻速行駛,當(dāng)甲到達(dá)B地后立即原路原速返回,在返回途中再次與乙相遇后兩車都停止,如圖是甲、乙兩人之間的距離s(千類)與甲出發(fā)的時(shí)間t(小時(shí))之間的圖象,則當(dāng)甲第二次與乙相遇時(shí),乙離B地的距離為_____千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD中,CD=4,BC=6,按以下步驟作圖:①以點(diǎn)C為圓心,適當(dāng)長度為半徑作弧,分別交BC,CD于M,N兩點(diǎn):②分別以點(diǎn)M,N為圓心,以大于MN的長為半徑畫弧,兩弧在ABCD的內(nèi)部交于點(diǎn)P;③連接CP并延長交AD于點(diǎn)E,交BA的延長線于點(diǎn)F,則AF的長為( 。
A.1B.2C.2.5D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,其對稱軸是x=﹣1,且過點(diǎn)(﹣3,0),下列說法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(3,y2)是拋物線上兩點(diǎn),則y1<y2,其中說法正確的是( 。
A.①②B.②③C.①②④D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】風(fēng)電已成為我國繼煤電、水電之后的第三大電源,風(fēng)電機(jī)組主要由塔桿和葉片組成(如圖1),圖2是從圖1引出的平面圖.假設(shè)你站在A處測得塔桿頂端C的仰角是55°,沿HA方向水平前進(jìn)43米到達(dá)山底G處,在山頂B處發(fā)現(xiàn)正好一葉片到達(dá)最高位置,此時(shí)測得葉片的頂端D(D、C、H在同一直線上)的仰角是45°.已知葉片的長度為35米(塔桿與葉片連接處的長度忽略不計(jì)),山高BG為10米,BG⊥HG,CH⊥AH,求塔桿CH的高.(參考數(shù)據(jù):tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣2x+2與兩坐標(biāo)軸分別交于A、B兩點(diǎn),將線段OA分成n等份,分點(diǎn)分別為P1,P2,P3,…,Pn﹣1,過每個(gè)分點(diǎn)作x軸的垂線分別交直線AB于點(diǎn)T1,T2,T3,…,Tn﹣1,用S1,S2,S3,…,Sn﹣1分別表示Rt△T1OP1,Rt△T2P1P2,…,Rt△Tn﹣1Pn﹣2Pn﹣1的面積,則當(dāng)n=2015時(shí),S1+S2+S3+…+Sn﹣1=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】垃圾分類是對垃圾傳統(tǒng)收集處理方式的改變,是對垃圾進(jìn)行有效處理的一種科學(xué)管理方法.為了增強(qiáng)同學(xué)們垃圾分類的意識(shí),某班舉行了專題活動(dòng),對200件垃圾進(jìn)行分類整理,得到下列統(tǒng)計(jì)圖表,請根據(jù)統(tǒng)計(jì)圖表回答問題:(其中A:可回收垃圾;B:廚余垃圾;C:有害垃圾;D:其它垃圾).
類別 | 件數(shù) |
A | 70 |
B | b |
C | c |
D | 48 |
(1)________;________;
(2)補(bǔ)全圖中的條形統(tǒng)計(jì)圖;
(3)有害垃圾C在扇形統(tǒng)計(jì)圖中所占的圓心角為多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com