【題目】如圖,已知AB是⊙O的直徑,點(diǎn)P為圓上一點(diǎn),點(diǎn)C為AB延長線上一點(diǎn),PA=PC,∠C=30°.
(1)求證:CP是⊙O的切線.
(2)若⊙O的直徑為8,求陰影部分的面積.
【答案】
(1)證明:連接OP,如圖所示:
∵PA=PC,∠C=30°,
∴∠A=∠C=30°,
∴∠APC=120°,
∵OA=OP,
∴∠OPA=∠A=30°,
∴∠OPC=120°﹣30°=90°,
即OP⊥CP,
∴CP是⊙O的切線
(2)解:∵AB是⊙O的直徑,
∴∠APB=90°,
∴∠OBP=90°﹣∠A=60°,
∵OP=OB=4,
∴△OBP是等邊三角形,
∴∠POC=60°,
∵OP⊥CP,
∴∠C=30°,
∴OC=2OP=2OB=8,
∴PC= = =4 ,
∴陰影部分的面積=扇形OBP的面積﹣△OBP的面積= ﹣ × ×4×4 = ﹣4 .
【解析】(1)連接OP利用等腰三角形的性質(zhì)及三角形的內(nèi)角和求出∠OPC=120°﹣30°=90°得CP是⊙O的切線;(2)利用直徑所對的圓周角是直角及同圓的半徑相等得△OBP是等邊三角形,再由勾股定理得PC得長度,最后用陰影部分的面積=扇形OBP的面積﹣△OBP的面積即可。
【考點(diǎn)精析】根據(jù)題目的已知條件,利用三角形的內(nèi)角和外角和勾股定理的概念的相關(guān)知識可以得到問題的答案,需要掌握三角形的三個(gè)內(nèi)角中,只可能有一個(gè)內(nèi)角是直角或鈍角;直角三角形的兩個(gè)銳角互余;三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和;三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某奶茶店開業(yè)大酬賓推出四款飲料.1千克A飲料的原料是2千克蘋果,3千克梨,1千克西瓜;1千克B飲料的原料是2千克蘋果,3千克梨,1千克西瓜;1千克C飲料的原料是3千克蘋果,9千克梨,6千克西瓜;1千克D飲料的原料是2千克蘋果,6千克梨,4千克西瓜;如果每千克蘋果的成本價(jià)為2元,每千克梨的成本價(jià)為元,每千克西瓜的成本價(jià)為元.開業(yè)當(dāng)天全部售罄,銷售后,共計(jì)蘋果的總成本為100元,并且梨的總成本為126元,那么西瓜的總成本為_____元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小林在某商店購買商品A、B共三次,只有一次購買時(shí),商品A、B同時(shí)打折(折扣相同),其余兩次均按標(biāo)價(jià)購買.三次購買商品A、B的數(shù)量和費(fèi)用如下表:
購買商品A的數(shù)量/個(gè) | 購買商品B的數(shù)量/個(gè) | 購買總費(fèi)用/元 | |
第一次購物 | 6 | 5 | 1140 |
第二次購物 | 3 | 7 | 1110 |
第三次購物 | 9 | 8 | 1062 |
(1)小林以折扣價(jià)購買商品A、B是第 次購物;
(2)求出商品A、B的標(biāo)價(jià);
(3)若商品A、B的折扣相同,問商店是打幾折出售這兩種商品的?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:正方形ABCD的邊長為8,點(diǎn)E、F分別在AD、CD上,AE=DF=2,BE與AF相交于點(diǎn)G,點(diǎn)H為BF的中點(diǎn),連接GH,則GH的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AM∥BN,∠A=60°,點(diǎn)P是射線M上一動(dòng)點(diǎn)(與點(diǎn)A不重合),BC,BD分別平分∠ABP和∠PBN,分別交射線AM于點(diǎn)C,D.
(1)∠CBD=
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到某處時(shí),∠ACB=∠ABD,則此時(shí)∠ABC=
(3)在點(diǎn)P運(yùn)動(dòng)的過程中,∠APB與∠ADB的比值是否隨之變化?若不變,請求出這個(gè)比值:若變化,請找出變化規(guī)律.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,點(diǎn)E,F分別在邊AB與CD上,點(diǎn)G、H在對角線AC上,AG=CH,BE=DF.
(1)求證:四邊形EGFH是平行四邊形;
(2)若EG=EH,AB=8,BC=4.求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,隧道的截面由拋物線和長方形構(gòu)成,長方形的長是8m,寬是2m,拋物線的最高點(diǎn)到路面的距離為6米.
(1)按如圖所示建立平面直角坐標(biāo)系,求表示該拋物線的函數(shù)表達(dá)式;
(2)一輛貨運(yùn)卡車高為4m,寬為2m,如果該隧道內(nèi)設(shè)雙向車道,那么這輛貨車能否安全通過?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線 CB 和射線 OA,CB//OA,點(diǎn) B 在點(diǎn) C 的右側(cè).且滿足∠OCB=∠OAB=100°,連接線段 OB,點(diǎn) E、F 在直線 CB 上,且滿足∠FOB=∠AOB,OE平分∠COF.
(1)求∠BOE
(2)當(dāng)點(diǎn) E、F 在線段 CB 上時(shí)(如圖 1),∠OEC 與∠OBA 的和是否是定值?若是,求出這個(gè)值;若不是,說明理由。
(3)如果平行移動(dòng) AB,點(diǎn) E、F 在直線 CB 上的位置也隨之發(fā)生變化.當(dāng)點(diǎn) E、F 在點(diǎn) C 左側(cè)時(shí),∠OEC 和∠OBA 之間的數(shù)量關(guān)系是否發(fā)生變化?若不變,說明理由;若變化,求出他們之間的關(guān)系式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com