【題目】如圖,在中, ,點分別是的中點, 延長線上的一點,且

(1)求證: ;

(2)求證:

【答案】(1)證明見解析;(2)證明見解析.

【解析】試題分析:(1根據(jù)三角形中位線定理可得DE=BC,再根據(jù),從而可得DE=CF;

(2)利用SAS證明△BDE≌△ECF即可得.

試題解析(1)∵點分別是的中點,

∴DE‖BC,且DE=BC,

,∴DE=CF;

(2)∵AD=BD=AB,AE=EC=AC,AB=AC,

∴BD=EC, AD=AE,

∴∠ADE=∠AED,

∴∠BDE=180°-∠ADE=180°-∠AED,

∵DE‖BC,∴∠AED=∠ACB,

∴∠ECF=180°-∠ACB ,∴∠BDE=∠ECF,

又由(1)得DE=CF, ∴△BDE≌△ECF(SAS),

∴BE=EF.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】有這樣一個問題:探究函數(shù)的圖象與性質.

小亮根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)的圖象與性質進行了探究。

下面是小亮的探究過程,請補充完整:

(1)函數(shù)中自變量x的取值范圍是_________.

(2)下表是yx的幾組對應值.

x

-3

-2

-1

0

2

3

4

5

y

-

-

-4

-5

-7

m

-1

-2

-

-

m的值;

(3)在平面直角坐標系xOy中,描出了以上表中各對對應值為坐標的點,根據(jù)描出的點,畫出該函數(shù)的圖象;

(4)根據(jù)畫出的函數(shù)圖象,發(fā)現(xiàn)下列特征:該函數(shù)的圖象與直線x=1越來越靠近而永不相交,該函數(shù)的圖象還與直線_________越來越靠近而永不相交.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,AC=6BC=12,點D在邊BC上,點E在線段AD上,EFAC于點F,EGEFAB于點G,若EF=EG,則CD的長為( )

A.3.6B.4C.4.8D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P出發(fā),沿所示方向運動,每當碰到長方形OABC的邊時會進行反彈,反彈時反射角等于入射角,當點P2018次碰到長方形的邊時,點P的坐標為______

【答案】

【解析】

根據(jù)反射角與入射角的定義作出圖形;由圖可知,每6次反彈為一個循環(huán)組依次循環(huán),用2018除以6,根據(jù)商和余數(shù)的情況確定所對應的點的坐標即可.

解:如圖所示:經(jīng)過6次反彈后動點回到出發(fā)點

,

當點P2018次碰到矩形的邊時為第337個循環(huán)組的第2次反彈,

P的坐標為

故答案為:

【點睛】

此題主要考查了點的坐標的規(guī)律,作出圖形,觀察出每6次反彈為一個循環(huán)組依次循環(huán)是解題的關鍵.

型】填空
束】
15

【題目】為了保護環(huán)境,某公交公司決定購買A、B兩種型號的全新混合動力公交車共10輛,其中A種型號每輛價格為a萬元,每年節(jié)省油量為萬升;B種型號每輛價格為b萬元,每年節(jié)省油量為萬升:經(jīng)調查,購買一輛A型車比購買一輛B型車多20萬元,購買2A型車比購買3B型車少60萬元.

請求出ab;

若購買這批混合動力公交車每年能節(jié)省萬升汽油,求購買這批混合動力公交車需要多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“*”定義一種新運算:對于任意有理數(shù)ab,規(guī)定a*b=ab2+2ab+a.

如:1*3=1×32+2×1×3+1=16

(1)求2*(﹣2)的值;

(2)若2*x=m,(其中x為有理數(shù)),試比較m,n的大。

(3)若[]=a+4,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某果品超市經(jīng)銷一種水果,已知該水果的進價為每千克15元,通過一段時間的銷售情況發(fā)現(xiàn),該種水果每周的銷售總額相同,且每周的銷售量y(千克)與每千克售價x(元)的關系如表所示

每千克售價x(元)

25

30

40

每周銷售量y(千克)

240

200

150

1)寫出每周銷售量y(千克)與每千克售價x(元)的函數(shù)關系式;

2)由于銷售淡季即將來臨,超市要完成每周銷售量不低于300千克的任務,則該種水果每千克售價最多定為多少元?

3)在(2)的基礎上,超市銷售該種水果能否到達每周獲利1200元?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線與x軸交于A、D兩點,與y軸交于點B,四邊形OBCD是矩形,點A的坐標為1,0,點B的坐標為0,4,已知點Em,0是線段DO上的動點,過點E作PEx軸交拋物線于點P,交BC于點G,交BD于點H

1求該拋物線的解析式;

2當點P在直線BC上方時,請用含m的代數(shù)式表示PG的長度;

32的條件下,是否存在這樣的點P,使得以P、B、G為頂點的三角形與DEH相似?若存在,求出此時m的值;若不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料,然后解決問題:

截長法與補短法在證明線段的和、差、倍、分等問題中有著廣泛的應用.具體的做法是在某條線段上截取一條線段等于某特定線段,或將某條線段延長,使之與某特定線段相等,再利用全等三角形的性質等有關知識來解決數(shù)學問題.

如圖1,在ABC中,若AB12,AC8,求BC邊上的中線AD的取值范圍.

解決此問題可以用如下方法:延長AD到點E使DEAD,再連接BE,把ABAC、2AD集中在ABE中.利用三角形三邊的關系即可得4<AE<20 ,則2<AD<10.

1)問題解決:受到上題解法的啟發(fā),如圖2,在正方形ABCD中,已知:∠EAF=45°,角的兩邊AE、AF分別與BC、CD相交于點E、F,若BE=2,DF=3,求EF的長.可延長 CDE′,使得DE′BE,連接AE′,先證ABE≌△ADE′,進一步證明 AEF≌△AE′F , 即可得EF=E′F, 那么EF=_________.

2)問題拓展:

如圖3,在⊙O中,AB、AD是⊙O的弦,且AB=AD,M、N是⊙O上的兩點,∠MANBAD.

①如圖4,連接MN、MD,求證:MH=BM+DHDMAN;

②若點C(點C不與點AD、N重合)上,連接CB、CD分別交AMAN或其延長線于點E、F,直接寫出EF、BE、DF之間的等式關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校隨機抽取部分學生,就“學習習慣”進行調查,將“對自己做錯題進行整理、分析、改正”(選項為:很少、有時、常常、總是)的調查數(shù)據(jù)進行了整理,繪制成部分統(tǒng)計圖如下:

請根據(jù)圖中信息,解答下列問題:

(1)該調查的樣本容量為________, =________%, =________%,“常!睂刃蔚膱A心角的度數(shù)為__________;

(2)請你補全條形統(tǒng)計圖;

(3)若該校有3200名學生,請你估計其中“總是”對錯題進行整理、分析、改正的

學生有多少名?

查看答案和解析>>

同步練習冊答案