【題目】Rt△ABC中,∠C=90°,點D、E分別是△ABC邊AC、BC上的點,點P是一動點.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.
(1)若點P在線段AB上,如圖(1)所示,且∠α=50°,則∠1+∠2= °;
(2)若點P在邊AB上運動,如圖(2)所示,則∠α、∠1、∠2之間的關系為: ;
(3)若點P運動到邊AB的延長線上,如圖(3)所示,則∠α、∠1、∠2之間有何關系?猜想并說明理由.
(4)若點P運動到△ABC形外,如圖(4)所示,則∠α、∠1、∠2之間的關系為: .
【答案】(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由見解析;(4)∠2=90°+∠1﹣α.
【解析】試題分析: (1)先用平角的得出,∠CDP=180°-∠1,∠CEP=180°-∠2,最后用四邊形的內角和即可;
(2)同(1)方法即可;
(3)利用平角的定義和三角形的內角和即可得出結論;
(4)利用三角形的內角和和外角的性質即可得出結論.
試題解析:
(1)∵∠1+∠2+∠CDP+∠CEP=360°,∠C+∠α+∠CDP+∠CEP=360°,
∴∠1+∠2=∠C+∠α,
∵∠C=90°,∠α=50°,
∴∠1+∠2=140°;
故答案為:140°;
(2)由(1)得出:
∠α+∠C=∠1+∠2,
∴∠1+∠2=90°+α
故答案為:∠1+∠2=90°+α;
(3)∠1=90°+∠2+α,
理由:∵∠2+∠α=∠DME,∠DME+∠C=∠1,
∴∠1=∠C+∠2+α=90°+∠2+α.
(4)∵∠PFD=∠EFC,
∴180°﹣∠PFD=180°﹣∠EFC,
∴∠α+180°﹣∠1=∠C+180°﹣∠2,
∴∠2=90°+∠1﹣α.
故答案為:∠2=90°+∠1﹣α.
點睛:本題考查了三角形內角和定理和外角的性質、對頂角相等的性質,熟練利用三角形外角的性質是解題的關鍵.
科目:初中數學 來源: 題型:
【題目】已知:在△ABC和△XYZ中,∠A=40°,∠Y+∠Z=95°,將△XYZ如圖擺放,使得∠X的兩條邊分別經過點B和點C.
(1)當將△XYZ如圖1擺放時,則∠ABX+∠ACX=_____________度;
(2)當將△XYZ如圖2擺放時,請求出∠ABX+∠ACX的度數,并說明理由;
(3)能否將△XYZ擺放到某個位置時,使得BX、CX同時平分∠ABC和∠ACB?請直接寫出你的結論:___________
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,下列4個結論:
①abc<0;②b<a+c;③4a+2b+c>0;④b2-4ac>0
其中正確結論的有( )
A.①②③ B.①②④ C.①③④ D.②③④
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com