精英家教網 > 初中數學 > 題目詳情

【題目】Rt△ABC中,∠C=90°,點D、E分別是△ABCACBC上的點,點P是一動點.∠PDA=∠1∠PEB=∠2,∠DPE=∠α.

1)若點P在線段AB上,如圖(1)所示,且∠α=50°,則∠1+∠2=   °

2)若點P在邊AB上運動,如圖(2)所示,則∠α、∠1、∠2之間的關系為:   ;

3)若點P運動到邊AB的延長線上,如圖(3)所示,則∠α、∠1、∠2之間有何關系?猜想并說明理由.

4)若點P運動到△ABC形外,如圖(4)所示,則∠α∠1∠2之間的關系為:  .

【答案】(1)140°;(2)∠1+∠2=90°+α;3)∠1=90°+2+α,理由見解析;(4)2=90°+1α

【解析】試題分析: 1)先用平角的得出,∠CDP=180°-1CEP=180°-2,最后用四邊形的內角和即可;

2)同(1)方法即可;

3)利用平角的定義和三角形的內角和即可得出結論;

4)利用三角形的內角和和外角的性質即可得出結論.

試題解析:

1∵∠1+2+CDP+CEP=360°C+α+CDP+CEP=360°

∴∠1+2=C+α,

∵∠C=90°,α=50°

∴∠1+2=140°;

故答案為:140°;

2)由(1)得出:

α+C=1+2,

∴∠1+2=90°+α

故答案為:∠1+2=90°+α;

31=90°+2+α

理由:∵∠2+α=DME,DME+C=1,

∴∠1=C+2+α=90°+2+α

4∵∠PFD=EFC,

180°﹣PFD=180°﹣EFC

∴∠α+180°﹣1=C+180°﹣2

∴∠2=90°+1﹣α

故答案為:∠2=90°+1﹣α

點睛:本題考查了三角形內角和定理和外角的性質對頂角相等的性質,熟練利用三角形外角的性質是解題的關鍵.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】□ABCD中,∠A=75°,則∠B=______度,∠C=______.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算(-2)6÷(-2)2 =

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:在△ABC和△XYZ中,∠A=40°,∠Y+∠Z=95°,將△XYZ如圖擺放,使得∠X的兩條邊分別經過點B和點C.

(1)當將△XYZ如圖1擺放時,則∠ABX+∠ACX=_____________度;

(2)當將△XYZ如圖2擺放時,請求出∠ABX+∠ACX的度數,并說明理由;

(3)能否將△XYZ擺放到某個位置時,使得BX、CX同時平分∠ABC和∠ACB?請直接寫出你的結論:___________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:2m+2的平方根是±4,3m+n+1的平方根是±5,求m+2n的值

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,下列4個結論:

①abc<0;②b<a+c;③4a+2b+c>0;④b2-4ac>0

其中正確結論的有(

A.①②③ B.①②④ C.①③④ D.②③④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列平面圖形,既是中心對稱圖形,又是軸對稱圖形的是( 。

A. 等腰三角形 B. 正五邊形 C. 平行四邊形 D. 矩形

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】8 a2 b2÷(4ab)_________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(-2ax-3by)(2ax+3by)=_______

查看答案和解析>>

同步練習冊答案