【題目】在平面直角坐標(biāo)系xOy中,一次函數(shù)的圖象經(jīng)過點(diǎn)A(4,1)與點(diǎn)B(0,5).
(1)求一次函數(shù)的表達(dá)式;
(2)若P點(diǎn)為此一次函數(shù)圖象上一點(diǎn),且S△POB= S△AOB , 求P點(diǎn)的坐標(biāo).
【答案】
(1)解:設(shè)一次函數(shù)的解析式為y=kx+b,
將A(4,1)、B(0,5)代入得: ,
解得: ,
∴一次函數(shù)表達(dá)式為y=﹣x+5
(2)解:設(shè)P(x,﹣x+5),
∵S△POB= S△AOB,
∴ ×OB|xP|= ×OBxA,即 ×5|xP|= × ×5×4,
解得:xP=6或xP=﹣6,
∴點(diǎn)P的坐標(biāo)為(6,﹣1)或(﹣6,11)
【解析】(1)待定系數(shù)法求解可得;(2)設(shè)P(x,﹣x+5),根據(jù)S△POB= S△AOB可得 ×OB|xP|= ×OBxA , 即 ×5|xP|= × ×5×4,解之求得xP即可知答案.
【考點(diǎn)精析】本題主要考查了確定一次函數(shù)的表達(dá)式的相關(guān)知識點(diǎn),需要掌握確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為加強(qiáng)公民的節(jié)水意識,合理利用水資源.某市對居民用水實行階梯水價,居民家庭每月用水量劃分為三個階梯,一、二、三級階梯用水的單價之比等于1:1.5:2.如圖折線表示實行階梯水價后每月水費(fèi)y(元)與用水量xm3之間的函數(shù)關(guān)系.其中線段AB表示第二級階梯時y與x之間的函數(shù)關(guān)系.
(1)寫出點(diǎn)B的實際意義;
(2)求線段AB所在直線的表達(dá)式;
(3)某戶5月份按照階梯水價應(yīng)繳水費(fèi)102元,其相應(yīng)用水量為多少立方米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若當(dāng)x=1和x=3時,代數(shù)式ax2+bx+5的值相等,則當(dāng)x=4時,代數(shù)式ax2+bx+5的值是( 。
A.5B.﹣5C.0D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把(x-1)當(dāng)做一個整體,合并3(x-1)2-2(x-1)3-5(1-x)2+(1-x)3的結(jié)果為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,已知直線y=x上一點(diǎn)P(2,2),C為y軸上一點(diǎn),連接PC,線段PC繞點(diǎn)P順時針旋轉(zhuǎn)90°至線段PD,過點(diǎn)D作直線AB⊥x軸,垂足為B,直線AB與直線y=x交于點(diǎn)A,連接CD,直線CD與直線y=x交于點(diǎn)Q,當(dāng)△OPC≌△ADP時,則C點(diǎn)的坐標(biāo)是 , Q點(diǎn)的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】春天來了,小明騎自行車從家里出發(fā)到野外郊游,從家出發(fā)0.5小時后到達(dá)甲地,游玩一段時間后按原速前往乙地,小明離家1小時20分鐘后,媽媽駕車沿相同路線前往乙地,如圖是他們離家的路程y(km)與小明離家時間x(h)的函數(shù)圖象.已知媽媽駕車的速度是小明騎車速度的3倍.
(1)直接寫出小明開始騎車的0.5小時內(nèi)所對應(yīng)的函數(shù)解析式 .
(2)小明從家出發(fā)多少小時后被媽媽追上?此時離家多遠(yuǎn)?
(3)若媽媽比小明早12分鐘到達(dá)乙地,求從家到乙地的路程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,△ABC中,D是BC邊上一點(diǎn),E是AD的中點(diǎn),過點(diǎn)A作BC的平行線交CE的延長線于F,且AF=BD,連接BF.
(1)求證:D是BC的中點(diǎn);
(2)若AB=AC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com