【題目】如圖,RtABO的頂點(diǎn)A是雙曲線與直線第二象限的交點(diǎn),AB軸于點(diǎn)BSABO=.

1)求這兩個函數(shù)的解析式;

2)求直線與雙曲線的兩個交點(diǎn)A,C的坐標(biāo);

3)求AOC的面積.

【答案】1)兩個函數(shù)的解析式分別為y=,y=x +2;(2)點(diǎn)A為(﹣1,3),C為(3,1);(34

【解析】試題分析:1根據(jù)SABO=,即,所以,又因?yàn)閳D象在二四象限,所以xy=3k=-3從而求出反比例函數(shù)解析式將k=-3代入,求出一次函數(shù)解析式;

2)將兩個函數(shù)關(guān)系式y=y=x +2聯(lián)立,解這個方程組,可求出兩個交點(diǎn)A,C的坐標(biāo);

3)將x=0代入y=x +2中,求出D點(diǎn)坐標(biāo),根據(jù)AOC的面積=△ADO的面積+△CDO的面積求解即可.

解:(1)設(shè)A點(diǎn)坐標(biāo)為(x,y),且x0,y0

SABO=|OB||AB|=xy=

xy=﹣3

又∵y= k=﹣3

∴所求的兩個函數(shù)的解析式分別為y=,y=x +2

2A、C兩點(diǎn)坐標(biāo)滿足

解得

∴交點(diǎn)A為(﹣1,3),C為(3﹣1

3)由y=﹣x+2,令x=0,得y=2

∴直線y=﹣x+2y軸的交點(diǎn)D的坐標(biāo)為(02

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線過A(-1,0)、B(3,0)、C(0,-1)三點(diǎn).

1求該拋物線的表達(dá)式;

(2)若該拋物線的頂點(diǎn)為D,求直線AD的解析式;

(3)點(diǎn)Qy軸上,點(diǎn)P在拋物線上,要使QP、A、B為頂點(diǎn)的四邊形是平行四邊形,求所有滿足條件的點(diǎn)標(biāo).P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,BD平分∠ABC,且ADBD,EAC的中點(diǎn),AD6cm,BD8cmBC16cm,則DE的長為_____cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中每個小正方形的邊長都是1

1)在方格紙中畫ABC,使AB=,AC=,BC=4;

2)請你用所學(xué)的知識驗(yàn)證所畫的ABC是不是直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們定義:有一組鄰邊相等的凸四邊形叫做“等鄰邊四邊形”.

1)已知:如圖1,四邊形ABCD的頂點(diǎn)A,B,C在網(wǎng)格格點(diǎn)上,請你在如下的57的網(wǎng)格中畫出3個不同形狀的等鄰邊四邊形ABCD,要求頂點(diǎn)D在網(wǎng)格格點(diǎn)上;

2)如圖2,矩形ABCD中,AB=,BC=5,點(diǎn)EBC邊上,連結(jié)DEAFDE于點(diǎn)F,若DE=CD,找出圖中的等鄰邊四邊形;

3)如圖3,在RtABC中,ACB=90°,AB=4AC=2,DBC的中點(diǎn),點(diǎn)MAB邊上一點(diǎn),當(dāng)四邊形ACDM等鄰邊四邊形時,求BM的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一家商鋪進(jìn)行維修,若請甲、乙兩名工人同時施工,天可以完成,共需支付兩人工資元,若先請甲工人單獨(dú)做天,再請乙工人單獨(dú)做天也可完成,共需付給兩人工資

甲、乙工人單獨(dú)工作一天,商鋪應(yīng)分別支付多少工資?

單獨(dú)請哪名工人完成,商鋪支付維修費(fèi)用較少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】王亮同學(xué)利用課余時間對學(xué)校旗桿的高度進(jìn)行測量,他是這樣測量的:把長為3m的標(biāo)桿垂直放置于旗桿一側(cè)的地面上,測得標(biāo)桿底端距旗桿底端的距離為15m,然后往后退,直到視線通過標(biāo)桿頂端剛好看到旗桿頂端時為止,測得此時人與標(biāo)桿的水平距離為2m,已知王亮的身高為1.6m,請幫他計(jì)算旗桿的高度.(王亮眼睛距地面的高度視為他的身高)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10分如圖,ABCD中,點(diǎn)E,F(xiàn)在直線AC上點(diǎn)E在F左側(cè),BEDF.

1求證:四邊形BEDF是平行四邊形;

2若ABAC,AB=4,BC=,當(dāng)四邊形BEDF為矩形時,求線段AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有甲、乙兩個不透明的布袋,甲袋中有2個完全相同的小球,分別標(biāo)有數(shù)字0和-2;乙袋中有3個完全相同的小球,分別標(biāo)有數(shù)字-201,小明從甲袋中隨機(jī)取出1個小球,記錄標(biāo)有的數(shù)字為x,再從乙袋中隨機(jī)取出1個小球,記錄標(biāo)有的數(shù)字為y,這樣確定了點(diǎn)Q的坐標(biāo)(x,y)

1寫出點(diǎn)Q所有可能的坐標(biāo);

2求點(diǎn)Qx軸上的概率.

查看答案和解析>>

同步練習(xí)冊答案